
faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 1 10/19/2018

faust2sam
Faust Integration with the

Analog Devices
SHARC Audio Module

Platform

Gregory Pat Scandalis
support@moforte.com

Document Revision R1.4

Document History:

GPS 9/14/2017 Document Started
GPS 12/09/2017 First revision (R1.1) completed
GPS 01/02/2018 Revisions
GPS 04/28/2018 Final revisions
GPS 06/02/2018 Redid MIDI assignment tables.
GPS 06/11/2018 Added in block diagram and workflow images
GPS 06/11/2018 Removed Faust additions, faust2sam is now a part of the faust dist
GPS 10/11/2018 Small updates
GPS 10/19/2018 Updated info on MIDI mappings to the DIY POTS/Switches
GPS 10/19/2018 Added Yann’s suggestion to build Faust as user, but install as root

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 2 10/19/2018

1.0	 faust2sam Overview ... 4	
1.1	 Faust ... 4	
1.2	 faust2sam ... 5	
1.3	 Useful Faust References .. 5	
1.4	 The Faust Compiler ... 5	
1.5	 Prerequisites (Mac/OS X) .. 6	
1.6	 Workflow ... 6	

2.0	 Installing MacPorts .. 7	

3.0	 Downloading, Compiling and Installing Faust .. 8	
3.1	 Downloading Faust .. 8	
3.2	 Compiling Faust ... 8	
3.3	 Installing Faust ... 8	
3.4	 Location of the SAM examples ... 8	

4.0	 The CCES Bare Metal Project .. 9	

5.0	 Setting up Faust Editing Mode in emacs ... 10	

6.0	 MIDI in Faust ... 11	
6.1	 Mapping MIDI messages to Faust Control .. 11	
6.2	 MIDI Conventions for the Pots and Push Buttons on the DIY Board 12	

7.0	 faust2sam workflow ... 13	

8.0	 Example Workflow – MIDI Controlled Volume on Core 1 15	
8.1	 The Faust Code for the MIDI Controlled Volume .. 15	
8.2	 Building a Test GUI for the MIDI Controlled Volume 15	
8.3	 Looking at the Block Diagram for the MIDI Controlled Volume 16	
8.4	 Running faust2sam .. 16	
8.5	 The CCES Baremetal Framework ... 17	
8.6	 Brief Notes on Compiling and Running the Algorithm in CCES 18	

9.0	 Example Workflow – MIDI Controlled Reverb on Core 1 19	
9.1	 The Faust Code for the MIDI Controlled Reverb .. 19	
9.2	 Building a Test GUI for the MIDI Controlled Reverb .. 19	
9.3	 Looking at the Block Diagram for the MIDI Controlled Reverb 20	
9.4	 Running faust2sam .. 20	

10.0	 Example Workflow – MIDI Sawtooth Synth (Core 1) 21	
10.1	 The Faust Code for the MIDI Controlled Sawtooth Synth 21	
10.2	 Building a Test GUI for the MIDI Controlled Sawtooth Synth 22	
10.3	 Looking at the Block Diagram for the MIDI Controlled Sawtooth 23	
10.4	 Running faust2sam .. 24	

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 3 10/19/2018

11.0	 Example Workflow – MIDI Virtual Analog Synth (Core1) /Effects (Core 2) 25	
11.1	 The Faust Code for the Virtual Analog Synth (Core 1) 25	
11.2	 Building a Test GUI for the Virtual Analog Synth .. 26	
11.3	 Looking at the Block Diagram for the Virtual Analog Synth 27	
11.4	 Running faust2sam .. 28	
11.5	 The Faust Code for the Effects Chain (Core 2) ... 29	
11.6	 Building a Test GUI for the Effects Chain .. 30	
11.7	 Looking at the Block Diagram for the Effects Chain .. 31	
11.8	 Running faust2sam .. 32	
11.9	 The CCES Baremetal Framework ... 32	
11.10	 MIDI Assignments for the Virtual Analog Algorithm 33	
11.11	 MIDI Assignments for the Effects Chain Algorithm 34	
11.12	 The Virtual Analog/Effects Chain TouchOSC UI ... 36	

12.0	 Conclusion .. 38	

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 4 10/19/2018

1.0 faust2sam Overview

1.1 Faust
Faust (Functional Audio Stream) is an open-source, functional programming language,
specifically designed for real-time audio signal processing and synthesis. Faust
generates C++, as well as other target languages, for signal processing applications.

In addition to generating efficient inner loops in C++, Faust also:

• Can generate test GUIs for prototyping algorithms

• Can generate easy-to-read hierarchical block diagrams directly from the Faust
source, which graphically illustrate signal flow and processing.

• Provide a runtime system that supports MIDI for both voice allocation and
parameter control.

Below is an example of the complete Faust code for a simple MIDI controlled sawtooth
synthesizer:

Chapter 10 will go into more detail about this example, its MIDI control and its block
diagram.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 5 10/19/2018

1.2 faust2sam

Faust programs may be targeted for many different platforms via what is known as “an
architecture”. The script faust2sam calls the Faust compiler using an architecture that
is specific to the SHARC Audio Module platform. When an algorithm is compiled using
faust2sam, three C++ source code files are generated for the SHARC Audio Module
platform. These files may then be inserted into a Cross Core Embedded Studio (CCES)
workspace that can be compiled into an algorithm that runs on the SHARC Audio
Module platform.

1.3 Useful Faust References

This document will not go into detail about the Faust language. There are a number of
good references and tutorials for Faust. Here are some useful references for learning more
about Faust.

• The main Faust website: http://faust.grame.fr

• Faust Documentation: http://faust.grame.fr/Documentation/

• Dr. Julius O. Smith III’s site about Faust: https://ccrma.stanford.edu/~jos/spf/

• Romain Michon’s Faust tutorials:
https://ccrma.stanford.edu/~rmichon/faustTutorials/

• Romain’s online Faust course:
https://ccrma.stanford.edu/~rmichon/faustWorkshops/course2015/

• The Wikipedia entry:
https://en.wikipedia.org/wiki/FAUST_(programming_language)

1.4 The Faust Compiler

Faust can be downloaded to a host computer, compiled and installed. All prototyping is
done on the host computer. Currently, Faust is easily compiled and run on Mac/OS X
machines and Linux machines. This document describes how to download, compile and
install Faust on a Mac/OS X machine.

In addition, the Faust compiler can run on a remote server accessed via a browser. All
prototyping done in a web browser and the browser is able to export C++ targeted for the
SHARC Audio Module platform.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 6 10/19/2018

1.5 Prerequisites (Mac/OS X)

A number of prerequisites are needed in order to compile Faust and develop with Faust.

• xcode needs to be installed and the command line tools need to be installed so that
Faust can be compiled.

• Before Faust is downloaded macports should be installed along with a number of
useful packages. macports is a package manager for ports of Linux tools for the
Mac. The most important package to install from macports is the QT5 package,
which provides libraries for Faust to build GUIs used for prototyping algorithms.

• Faust will need to be downloaded as well. Faust will be compiled and installed on
the system.

• Optionally a faust-mode elisp file can be installed for emacs to support visual

editing of Faust code using emacs.

1.6 Workflow

The typical workflow using Faust would be:

• Create algorithm in Faust. MIDI control can be attached to the algorithm in the
Faust code using the MIDI metadata mechanism (see chapter 7).

• Use faust2caqt to create a running GUI app on the host computer (Mac/OS
X) so that the algorithm can be tested. This GUI app can process audio (on the
Mac host) as well as MIDI.

• Optionally the developer can use faust2firefox to generate a hierarchical
block diagram for the algorithm to examine the algorithm’s signal flow.

• Once the developer is satisfied with the algorithm faust2sam can be used to
generate a set of three C++ files for the algorithm that are intended to be used
with Analog Devices Bare Metal Framework for the SHARC Audio Module.
This framework along with the Faust generated code is compiled and debugged
using Analog Devices’ CCES tool chain.

• These three source files can be copied to the Faust directory in the CCES
framework. The framework can then be compiled and downloaded to the
platform.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 7 10/19/2018

2.0 Installing MacPorts

MacPorts is a package manager for ports of Linux tools for the Mac. Before Faust is
downloaded MacPorts should be installed along with a number of useful packages. The
most important package to install from macports is the QT5 package, which provides
libraries for Faust to build GUIs used for prototyping algorithms.

The main site for macports is: https://www.macports.org

The installation page is: https://www.macports.org/install.php

Once macports is installed QT5 should be installed with the command

% sudo port install qt5

This command will install/compile QT 5 along with its dependencies. This install can
take some time, as much as an hour or more.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 8 10/19/2018

3.0 Downloading, Compiling and Installing Faust

3.1 Downloading Faust
The latest Faust can be cloned from github. Typically this would be cloned into
~/Developer/faust:

% cd ~/Developer
% git clone https://github.com/grame-cncm/faust.git

3.2 Compiling Faust
Faust can be compiled like this:

% cd ~/Developer/faust
% make

The compile will run for about 5 minutes.

3.3 Installing Faust
Faust can be installed on your system with this:

% cd ~/Developer/faust
% sudo make install

You can test that Faust is installed by invoking the faust –version command.

% faust --version
FAUST : DSP to C, C++, Rust, LLVM IR, JAVA, JavaScript,
asm.js, WebAssembly (wast/wasm), Interpreter compiler,
Version 2.11.8 Copyright (C) 2002-2018, GRAME - Centre
National de Creation Musicale. All rights reserved.

3.4 Location of the SAM examples

Note that the examples described in this document can be found in the Faust distribution
under: …/faust/examples/SAM

% ls /Users/gps/Developer/faust/examples/SAM
16_channel_volume freeverb
sawtooth_synth chorus
sine_synth echo
virtualAnalog effects
volume flanger
SHARC Audio Module Faust Interface.pdf

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 9 10/19/2018

4.0 The CCES Bare Metal Project

The bare metal framework is a part of the Analog Devices SHARC Audio Module
platform installer, which contains a CCES project workspace that can be used to build
SHARC Audio Module platform.

Information on how to get the Bare Metal Framework can be found here:

https://wiki.analog.com/resources/tools-software/sharc-audio-module/baremetal

Faust algorithms can be added to this framework in the “faust” directory, which will be
explained in section 8.5 (below)

NOTE that this document will not go into detail about how to use CCES. That
documentation is best described by Analog Devices.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 10 10/19/2018

5.0 Setting up Faust Editing Mode in emacs

Optionally for users of emacs, a Faust editing mode can be setup in the. emacs file.

Below is an example Faust program in emacs Faust editing mode.

The elisp file for Faust editing mode and instructions for set it can be found here:

https://github.com/rukano/emacs-faust-mode

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 11 10/19/2018

6.0 MIDI in Faust

6.1 Mapping MIDI messages to Faust Control

Faust has a number of meta data conventions for mapping MIDI messages into Faust
control. Below is the simple MIDI controlled sawtooth synth, which illustrates how this
control mapping is down. In the example below nentry() is a numerical entry object that
can be mapped to receive specific MIDI values. A number of metadata values are
reserved to have specific mapping functions.

• freq – If a MIDI noteOn event is received it’s MIDI keyNumber is mapped to a
frequency.

• bend – if a MIDI pitchBend message is received it is mapped to a bend value.

• gain – if a MIDI noteOn message is received it’s velocity value is mapped to a
gain value which ranges from [0 .. 1.0]

• gate – if MIDI noteOn/noteOff messages are received they are mapped to a gate
value (0/1)

• [midi:ctrl 1] – A Faust control (slider, etc.) can be mapped to listen to a MIDI
continuous controller.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 12 10/19/2018

6.2 MIDI Conventions for the Pots and Push Buttons on the DIY Board

The pots and push buttons on the DIY board can be used to control key algorithm
parameters. By default the POTS HADC-0,1,2 are mapped to MIDI CC-2,3,4 and the
push button switches SW-4,3,2,1 are mapped to MIDI CC-105,104,103,102.

The algorithm examples that are provided use these conventions. For example, the
effects algorithm is “echo : flange : chorus : reverb”. For this algorithm each of the four
push buttons turns on a different effects unit. The first pot is the echo feedback, the
second pot is the reverb room size and the third pot is the reverb damping.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 13 10/19/2018

7.0 faust2sam workflow

The typical workflow using faust to design algorithms for the SHARC Audio Module is:

• Edit the Faust code using a text editor

• Use the faust2caqt program: to compile the code into a working host based
application that supports both MIDI and Audio. This application can be used to
experiment with the algorithm. Note that this compile can be up to 20 times faster
than compiling with CCES. Thus, this host based application can be used to
quickly experiment and make changes to the algorithm.

• Iterate on making changes to the algorithm.

• When the algorithm is mature, it can be migrated to CCES for compilation for the
SHARC Audio Module. This migration is accomplished with the faust2sam
script. The faust2sam script generates the following three C++ source files,
which is the algorithm.

fast_pow2.h
samFaustDSP.cpp
samFaustDSP.h

• CCES can then be used to compile and test the algorithm on the SHARC Audio

Module.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 14 10/19/2018

Here is a block diagram of how the code for the virtual analog synthesizer demo and the
effects chain is organized.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 15 10/19/2018

8.0 Example Workflow – MIDI Controlled Volume on Core 1

A first example to demonstrate the workflow is a simple MIDI controlled stereo volume
control that runs on Core 1.

8.1 The Faust Code for the MIDI Controlled Volume

Here is the Faust code for the MIDI controlled stereo volume. Note that the metadata
string “[midi:ctrl 2]” is used to map MIDI continuous controller 2 (CC-2) to control the
gain slider.

8.2 Building a Test GUI for the MIDI Controlled Volume

A test GUI for this Faust program can be built with the faust2caqt program:

% faust2caqt –midi volume.dsp
% open volume.app

Here is what this test GUI looks like. This test program supports audio in/out and MIDI
in/out and can be used to test the algorithm before committing to a SHARC Audio
Module build.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 16 10/19/2018

8.3 Looking at the Block Diagram for the MIDI Controlled Volume

The faust2firefox command can be used to generate a hierarchical block diagram
for an algorithm.

% faust2firefox volume.dsp

8.4 Running faust2sam

faust2sam can be run as follows:

% faust2sam –midi volume.dsp
% open *.zip

faust2sam will generate the following three C++ source files, which is the algorithm.

fast_pow2.h
samFaustDSP.cpp
samFaustDSP.h

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 17 10/19/2018

8.5 The CCES Baremetal Framework

The CCES Baremetal Framework has a subproject directory for each DSP core:

sam_baremetal_framework_Core1
sam_baremetal_framework_Core2

For each project directory there is a directory where these three source files should be
placed. Note that each core can be running a different Faust algorithm.

sam_baremetal_framework_Core1/src/faust
sam_baremetal_framework_Core2/src/faust

In addition there is a header file that is common across all cores called
audio_system_config.h. In this file the following pre-processor variables
should be set in the following way. The example below indicates that a Faust algorithm
will only be running on Core1 and that Core2 will be simply passing audio to the codec.

#define SAM_DIY_MIDI_BOARD_PRESENT TRUE

…

#define FAUST_INSTALLED TRUE

…

#define USE_FAUST_ALGORITHM_CORE1 TRUE
#define USE_FAUST_ALGORITHM_CORE2 FALSE

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 18 10/19/2018

8.6 Brief Notes on Compiling and Running the Algorithm in CCES

This document will not go into extensive detail on how to use CCES. However here
are some brief notes on how to work with this algorithm.

• Copy the Faust C++ source files to the “faust” directory for the core that the
algorithm will run on.

• Set the audio_system_config.h preprocessor variables as described.

• Open the workspace with CCES.

• Use “File> Import> General> Existing Projects into Workspace” to import the
projects for each core into the workspace.

• Compile with “Project> Clean…”

• Run the project on the SHARC Audio Module. Be sure that the host computer is
connected to the SHARC Audio Module with an ICE-2000 or ICE-1000 interface.

• Create a Debug Configuration per the CCES instructions.

• Run the compiled algorithm on the SHARC Audio Module with Run> Debug

o Connect a MIDI controller to the DIY board MIDI In connector
o Connect an audio source to line-in and a speaker to line-out
o Send MIDI continuous controller 2. The volume of the audio source

should range from silent to max volume in a linear fashion.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 19 10/19/2018

9.0 Example Workflow – MIDI Controlled Reverb on Core 1

This second example is a MIDI controlled reverb on Core 1.

9.1 The Faust Code for the MIDI Controlled Reverb

Here is a subset the Faust code for the MIDI controlled reverb.

9.2 Building a Test GUI for the MIDI Controlled Reverb

A test GUI for this Faust program can be built with the faust2caqt program:

% faust2caqt –midi freeverb.dsp
% open freeverb.app

Here is what this test GUI looks like. This test program supports audio in/out and MIDI
in/out and can be used to test the algorithm before committing to a SHARC Audio
Module build.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 20 10/19/2018

9.3 Looking at the Block Diagram for the MIDI Controlled Reverb

The faust2firefox command can be used to generate a block diagram for an
algorithm. This block diagram is hierarchical. Here are a few of the hierarchical levels:

% faust2firefox freeverb.dsp

9.4 Running faust2sam

faust2sam can be run as follows:

% faust2sam –midi freeverb.dsp
% open *.zip

faust2sam will generate the following three C++ source files, which is the algorithm.

fast_pow2.h
samFaustDSP.cpp
samFaustDSP.h

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 21 10/19/2018

10.0 Example Workflow – MIDI Sawtooth Synth (Core 1)

This third example is a MIDI controlled sawtooth synth on Core 1.

10.1 The Faust Code for the MIDI Controlled Sawtooth Synth

Here is the Faust code for the MIDI controlled sawtooth synth. Notice the use of the
metadata elements:

• freq – If a MIDI noteOn event is received it’s MIDI keyNumber is mapped to a
frequency.

• bend – if a MIDI pitchBend message is received it is mapped to a bend value.

• gain – if a MIDI noteOn message is received it’s velocity value is mapped to a
gain value which ranges from [0 .. 1.0]

• gate – if MIDI noteOn/noteOff messages are received they are mapped to a gate
value (0/1)

• [midi:ctrl 1] – A Faust control (slider, etc) can be mapped to listen to a MIDI
continuous controller.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 22 10/19/2018

10.2 Building a Test GUI for the MIDI Controlled Sawtooth Synth

A test GUI for this Faust program can be built with the faust2caqt program:

% faust2caqt –midi –nvoices 6 sawtooth_synth.dsp
% open sawtooth_synth.app

Here is what this test GUI looks like. This test program supports audio in/out and MIDI
in/out and can be used to test the algorithm before committing to a SHARC Audio
Module build.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 23 10/19/2018

10.3 Looking at the Block Diagram for the MIDI Controlled Sawtooth

The faust2firefox command can be used to generate a hierarchical block diagram
for an algorithm. This block diagram is hierarchical. Here are a few of the hierarchical
levels:

% faust2firefox sawtooth_synth.dsp

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 24 10/19/2018

10.4 Running faust2sam

faust2sam can be run as follows:

% faust2sam –midi –nvoices 6 sawtooth_synth.dsp
% open *.zip

faust2sam will generate the following three C++ source files, which is the algorithm.

fast_pow2.h
samFaustDSP.cpp
samFaustDSP.h

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 25 10/19/2018

11.0 Example Workflow – MIDI Virtual Analog Synth (Core1) /Effects
(Core 2)

For this final example the full virtual analog synth is run on Core1 and the effects chain is
run on Core 2.

11.1 The Faust Code for the Virtual Analog Synth (Core 1)

Here is a subset of the Faust code for the virtual analog synth:

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 26 10/19/2018

11.2 Building a Test GUI for the Virtual Analog Synth

A test GUI for this Faust program can be built with the faust2caqt program:

% faust2caqt –midi –nvoices 1 virtualAnalog.dsp
% open virtualAnalog.app

Here is what this test GUI looks like. This test program supports audio in/out and MIDI
in/out and can be used to test the algorithm before committing to a SHARC Audio
Module build.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 27 10/19/2018

11.3 Looking at the Block Diagram for the Virtual Analog Synth

The faust2firefox command can be used to generate a hierarchical block diagram
for an algorithm. This block diagram is hierarchical. Here are a few of the hierarchical
levels:

% faust2firefox virtualAnalog.dsp

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 28 10/19/2018

11.4 Running faust2sam

faust2sam can be run as follows:

% faust2sam –midi –nvoices 1 virtualAnalog.dsp
% open *.zip

faust2sam will generate the following three C++ source files, which is the algorithm.

fast_pow2.h
samFaustDSP.cpp
samFaustDSP.h

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 29 10/19/2018

11.5 The Faust Code for the Effects Chain (Core 2)

The effects chain (echo: flanger: chorus: reverb) is run on Core 2.

Here is a subset of the Faust code for the effects chain (echo: flanger: chorus: reverb).

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 30 10/19/2018

11.6 Building a Test GUI for the Effects Chain

A test GUI for this Faust program can be built with the faust2caqt program:

% faust2caqt –midi effects.dsp
% open effects.app

Here is what this test GUI looks like. This test program supports audio in/out and MIDI
in/out and can be used to test the algorithm before committing to a SHARC Audio
Module build.

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 31 10/19/2018

11.7 Looking at the Block Diagram for the Effects Chain

The faust2firefox command can be used to generate a hierarchical block diagram
for an algorithm. This block diagram is hierarchical. Here are a few of the hierarchical
levels:

% faust2firefox effects.dsp

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 32 10/19/2018

11.8 Running faust2sam

faust2sam can be run as follows:

% faust2sam –midi effects.dsp
% open *.zip

faust2sam will generate the following three C++ source files, which is the algorithm.

fast_pow2.h
samFaustDSP.cpp
samFaustDSP.h

11.9 The CCES Baremetal Framework

The CCES Baremetal Framework has a subproject directory for each DSP core:

sam_baremetal_framework_Core1/src/faust
sam_baremetal_framework_Core2/src/faust

The virtualAnalog C++ files should be placed in the “faust” directory for Core 1 and the
effects chain C++ files should be placed in the “faust” directory for Core 2.

In audio_system_config.h. In this file the following pre-processor variables
should be set. This indicates that Faust algorithms will be running on Core1 and Core2.

#define SAM_DIY_MIDI_BOARD_PRESENT TRUE

…

#define FAUST_INSTALLED TRUE

…

#define USE_FAUST_ALGORITHM_CORE1 TRUE
#define USE_FAUST_ALGORITHM_CORE2 FALSE

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 33 10/19/2018

11.10 MIDI Assignments for the Virtual Analog Algorithm

Function	 MIDI	CC	 Module	 Type	 Notes	

Tune	 47	 1	-	Controllers	 knob	 Master	tuning	
Glide	 5	 1	-	Controllers	 knob	 Portamento	time	

Modulation	Mix	 48	 1	-	Controllers	 knob	
Modulation	mix	between	OSC3	
and	Noise	

		 		 		 		 		

Oscillator	Modulation	 22	 2	-	Oscillator	Bank	 switch	
Enable	modulation	control	of	
OSC	frequencies		

OSC	1	Range	 23	 2	-	Oscillator	Bank	 knob	 OSC	1	range	

OSC	1	Detune	 24	 2	-	Oscillator	Bank	 knob	 OSC	1	detuning	

OSC	1	Waveform	 25	 2	-	Oscillator	Bank	 knob	 OSC	1	waveform	shape	
OSC	2	Range	 28	 2	-	Oscillator	Bank	 knob	 OSC	2	range	

OSC	2	Detune	 29	 2	-	Oscillator	Bank	 knob	 OSC	2	detuning	
OSC	2	Waveform	 30	 2	-	Oscillator	Bank	 knob	 OSC	2	waveform	shape	

OSC	3	Range	 33	 2	-	Oscillator	Bank	 knob	 OSC	3	range	
OSC	3	Detune	 34	 2	-	Oscillator	Bank	 knob	 OSC	3	detuning	

OSC	3	Waveform	 35	 2	-	Oscillator	Bank	 knob	 OSC	3	waveform	shape	

OSC	3	Control	 9	 2	-	Oscillator	Bank	 switch	
OSC	3	as	a	control	signal	or	as	an	
audio	source	

		 		 		 		 		

OSC	1	Amp	 26	 3	-	Mixer	 knob	 OSC	1	gain	

Osc1	mixer	switch	 12	 3	-	Mixer	 switch	 OSC	1	enable	

OSC	2	Amp	 31	 3	-	Mixer	 knob	 OSC	2	gain	

Osc2	mixer	switch	 14	 3	-	Mixer	 switch	 OSC	2	enable	

OSC3	Amp	 36	 3	-	Mixer	 knob	 OSC	3	gain	

OSC3	mixer	switch	 17	 3	-	Mixer	 switch	 OSC	3	enable	
External	Input	amp	 27	 3	-	Mixer	 knob	 Extrenal	input	gain	
External	Input	mixer	
switch	 13	 3	-	Mixer	 switch	 External	input	enable	

Noise	Amp	 32	 3	-	Mixer	 knob	 Noise	gain	
Noise	mixer	switch	 15	 3	-	Mixer	 switch	 Noise	Enable	

White/pink	toggle	 16	 3	-	Mixer	 switch	 Noise	pink/white	

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 34 10/19/2018

Filter	Modulation	Enable	 19	 4	-	Filter	 switch	
Enable	modulation	control	of	the	
filter	cutoff	frequency	

Keyboard	Range	 38	 4	-	Filter	 knob	
Add	keyboard	control	of	the	filter	
cutoff	frequency	

Cutoff	Frequency		 74	 4	-	Filter	 knob	 Filter	cutoff	frequency	

Emphasis	 37	 4	-	Filter	 knob	 Filter	Resonance	(Q)	
Amount	of	Contour	 39	 4	-	Filter	 knob	 Amount	of	envelope	generator	

Attack	Time	 40	 4	-	Filter	 knob	
VCF	envelope	generator	attack	
time	

Decay	Time	 41	 4	-	Filter	 knob	
VCF	envelope	generator	decay	
time	

Sustain	Level	 42	 4	-	Filter	 knob	
VCF	envelope	generator	sustain	
level	

		 		 		 		 		

Attack	Time	 43	 5	-	Loudness	Contour	 knob	
VCA	envelope	generator	attack	
time	

Decay	Time	 44	 5	-	Loudness	Contour	 knob	
VCA	envelope	generator	decay	
time	

Sustain	Level	 45	 5	-	Loudness	Contour	 knob	
VCA	envelope	generator	sustain	
level	

		 		 		 		 		

Decay	 20	 6	-	Keyboard	 switch	
Enables	using	the	decay	stage	as	
a	release	stage	

Glide		 65	 6	-	Keyboard	 switch	 Enable	portamento	

Pitch	Wheel	 pitchWheel	 6	-	Keyboard	 knob	 Pitch	Wheel	

Mod	Wheel	 1	 6	-	Keyboard	 knob	 Modulation	Wheel	control	

Sustain	 64	 midi	sustain	foot	pedal	 switch	
Note	sustain,	preempts	the	
VCF/VCA	release	stage	

		 		 		 		 		

Master	Volume	 7	 5	-	Output	 knob	 Master	volume	

11.11 MIDI Assignments for the Effects Chain Algorithm

Function	 MIDI	CC	 Module	 Type	

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 35 10/19/2018

		 		 		 		
Invert	 49	 Flanger	 knob	
Enable	 102	 Flanger	 switch	
Delay	 50	 Flanger	 knob	
Rate	 51	 Flanger	 knob	
Depth	 52	 Flanger	 knob	
Feedback	 53	 Flanger	 knob	
Wave	Shape	 54	 Flanger	 knob	
		 		 		 		
Delay	 55	 Chorus	 knob	
Enable	 103	 Chorus	 switch	
Rate	 56	 Chorus	 knob	
Depth	 57	 Chorus	 knob	
Deviation	 58	 Chorus	 knob	
		 		 		 		
enable	 105	 Echo	 switch	
Delay	Portamento	 60	 Echo	 knob	
Delay	 61	 Echo	 knob	
Warp	 62	 Echo	 knob	
Feedback	 2	 Echo	 knob	
Amp	 75	 Echo	 knob	
Feedback	sm?	 76	 Echo	 knob	
		 		 		 		
Damp	 3	 Reverb	 knob	
Enable	 104	 Reverb	 switch	
Room	Size	 4	 Reverb	 knob	
Wet	Dry	 79	 Reverb	 knob	

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 36 10/19/2018

11.12 The Virtual Analog/Effects Chain TouchOSC UI

TouchOSC is a mobile app that can be used to create arbitrary GUIs that send MIDI
values. TouchOSC is available for both iOS and Android. A TouchOSC configuration is
provided for the Virtual Analog and Effects chain algorithms (virtualAnalog.touchOSC)

The Virtual Analog Page:

The Effects Chain Page:

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 37 10/19/2018

faust2sam Integration with the SHARC Audio Module Platform

faust2sam Page 38 10/19/2018

12.0 Conclusion

The Faust library provides a rich set of audio DSP objects that can be used in creating
DSP algorithms. Using Faust, it is possible to quickly create large algorithms that take
advantage of the computing power available on the SHARC Audio Module platform.

