

Package ‘UsingR’

February 13, 2026

Version 2.0-8

Title Data Sets, Etc. for the Text ``Using R for Introductory Statistics'', Second Edition

Maintainer John Verzani <verzani@math.csi.cuny.edu>

Description A collection of data sets to accompany the textbook ``Using R for Introductory Statistics," second edition.

Depends R (>= 2.15.0), MASS, HistData, Hmisc

Suggests zoo, ggplot2, vcd, lubridate, aplpack

License GPL (>= 2)

LazyData TRUE

NeedsCompilation no

Author John Verzani [aut, cre]

Repository CRAN

Date/Publication 2026-02-13 09:50:07 UTC

Contents

age.universe	5
aid	6
alaska.pipeline	6
alltime.movies	7
answers	8
aosat	8
arctic.oscillations	9
babies	10
babyboom	11
batting	12
baycheck	13
best.times	14
blood	15
breakdown	16

bright.stars	16
brightness	17
bumpers	18
BushApproval	18
bycatch	19
cabinet	20
camp	21
cancer	22
carbon	23
carsafety	23
central.park	24
central.park.cloud	25
ceo2013	26
cfb	26
chicken	27
chips	28
co2emiss	29
coins	29
coldvermont	30
confint.htest	31
corn	31
crime	32
deflection	33
demos	33
DensityPlot	34
diamond	35
divorce	36
DOTplot	36
dottodot	37
dowdata	38
dvdsales	39
emissions	39
errata	40
ewr	40
exec.pay	41
fat	42
father.son	43
female.inc	44
firstchi	45
five.yr.temperature	45
florida	46
galileo	47
galton	48
gap	49
gasprices	49
getAnswer	50
goalspergame	50
google	51

grades	51
grip	52
hall.fame	52
headtail	54
healthy	54
heartrate	55
home	56
homedata	56
homeprice	57
homework	58
HUMMER	58
income_percentiles	59
iq	60
kid.weights	60
KSI	61
last.tie	62
lawsuits	62
lorem	63
malpract	64
mandms	64
math	65
maydow	66
Medicare	67
midsize	67
MLBattend	68
movies	69
movie_data_2011	70
mw.ages	70
nba.draft	71
nisdc	72
normtemp	72
npdb	73
nym.2002	74
ObamaApproval	75
OBP	76
oral.lesion	76
ozonemonthly	77
paradise	78
pi2000	78
primes	79
puerto	79
QQplot	80
rat	81
reaction.time	82
reddrum	83
salmon.rate	83
salmonharvest	84
samhda	85

SAT	86
scatter.with.hist	87
scrabble	88
simple.chutes	89
simple.densityplot	90
simple.eda	91
simple.eda.ts	92
simple.fancy.stripchart	93
simple.freqpoly	93
simple.hist.and.boxplot	94
simple.lag	95
simple.lm	96
simple.median.test	97
simple.scatterplot	98
simple.sim	99
simple.violinplot	100
simple.z.test	101
skateranks	102
slc	103
smokyph	103
snacks	104
south	104
southernosc	105
sp500.excess	106
Split.zoo	106
squareplot	107
stud.recs	108
student.expenses	109
superbarplot	109
tastesgreat	111
tcm1y	111
tempsalinity	112
too.young	113
twins	113
u2	114
urchin.growth	115
vacation	115
violinplot	116
watertemp	117
wchomes	118
wellbeing	118
yahoo.get.hist.quote	119
yellowfin	120

age.universe	<i>Best estimate of the age of the universe</i>
--------------	---

Description

For years people have tried to estimate the age of the universe. This data set collects a few estimates starting with lower bounds using estimates for the earth's age.

Usage

```
data(age.universe)
```

Format

A data frame with 16 observations on the following 4 variables.

lower a numeric vector

upper a numeric vector

year a numeric vector

source Short description of source

Details

In the last two decades estimates for the age of the universe have been greatly improved. As of 2013, the best guess is 13.7 billion years with a margin of error of 1 percent. This last estimate is found by WMAP using microwave background radiation. Previous estimates were also based on estimates of Hubble's constant, and dating of old stars.

Source

This data was collected from the following web sites: <https://arxiv.org/abs/1212.5225>, <https://case.edu/pubaff/univcon03/kraussuniverse.html> (now off-line), <https://www.astro.ucla.edu/~wright/age.html>, <http://www.lhup.edu/~dsimane/> (now off-line), and <https://science.nasa.gov/mission/wmap-overview/>.

Examples

```
data(age.universe)
n <- nrow(age.universe)
x <- 1:n
names(x) = age.universe$year
plot(x,age.universe$upper,ylim=c(0,20))
points(x,age.universe$lower)
with(age.universe,sapply(x,function(i) lines(c(i,i),c(lower[i],upper[i]))))
```

aid	<i>monthly payment for federal program</i>
-----	--

Description

monthly payment for federal program

Usage

```
data(aid)
```

Format

The format is: Named num [1:51] 57.2 253.5 114.2 68.2 199.6 ... - attr(*, "names")= chr [1:51] "Alabama" "Alaska" "Arizona" "Arkansas" ...

Source

From Kitchen's Exploring Statistics

Examples

```
data(aid)
hist(aid)
```

alaska.pipeline	<i>Comparison of in-field and laboratory measurement of defects</i>
-----------------	---

Description

The Alaska pipeline data consists of in-field ultrasonic measurements of the depths of defects in the Alaska pipeline. The depth of the defects were then re-measured in the laboratory. These measurements were performed in six different batches.

Usage

```
data(alaska.pipeline)
```

Format

A data frame with 107 observations on the following 3 variables.

field.defect Depth of defect as measured in field

lab.defect Depth of defect as measured in lab

batch One of 6 batches

Source

From an example in *Engineering Statistics Handbook* from <http://www.itl.nist.gov/div898/handbook/>

Examples

```
data(alaska.pipeline)
res = lm(lab.defect ~ field.defect, alaska.pipeline)
plot(lab.defect ~ field.defect, alaska.pipeline)
abline(res)
plot(fitted(res),resid(res))
```

alltime.movies *Top movies of all time*

Description

The top 79 all-time movies as of 2003 by domestic (US) gross receipts.

Usage

```
data(alltime.movies)
```

Format

A data frame with 79 observations on the following 2 variables.

Gross a numeric vector

Release.Year a numeric vector

The row names are the titles of the movies.

Source

This data was found on <http://movieweb.com/movie/alltime.html> on June 17, 2003. The source of the data is attributed to (partially) Exhibitor Relations Co. .

Examples

```
data(alltime.movies)
hist(alltime.movies$Gross)
```

answers	<i>Answers to selected problems</i>
---------	-------------------------------------

Description

Opens pdf file containing answers to selected problems

Usage

```
answers()
```

Value

Called for its side-effect of opening a pdf

Examples

```
## answers()
```

aosat	<i>Artic Oscillation data based on SAT data</i>
-------	---

Description

A time series of January, February, and March measurements of the annular modes from January 1851 to March 1997.

Usage

```
data(aosat)
```

Format

The format is: first column is date in years with fraction to indicate month. The second column is the measurement.

Details

This site <http://jisao.washington.edu/ao/> had more details on the importance of this time series.

Source

This data came from the file AO_SATindex_JFM_Jan1851March1997.ascii at http://www.atmos.colostate.edu/ao/Data/ao_index.html

Examples

```
data(aosat)
## Not run:
library(zoo)
z = zoo(aosat[,2], order.by-aosat[,1])
plot(z)
## yearly
plot(aggregate(z, floor(index(z)), mean))
## decade-long means
plot(aggregate(z, 10*floor(index(z)/10), mean))

## End(Not run)
```

arctic.oscillations *Measurement of sea-level pressure at the arctic*

Description

A monthly time series from January 1899 to June 2002 of sea-level pressure measurements relative to some baseline.

Usage

```
data(arctic.oscillations)
```

Format

The format is: chr "arctic.oscillations"

Details

See <https://toptotop.org/> for more details on the importance of climate studies.

Source

The data came from the file AO_TREN_NCEP_Jan1899Current.ascii found many years ago at http://www.atmos.colostate.edu/ao/Data/ao_index.html.

Examples

```
data(arctic.oscillations)
x = ts(arctic.oscillations, start=c(1899,1), frequency=12)
plot(x)
```

babies*Mothers and their babies data*

Description

A collection of variables taken for each new mother in a Child and Health Development Study.

Usage

```
data(babies)
```

Format

A data frame with 1,236 observations on the following 23 variables.

Variables in data file

id identification number

plurality 5= single fetus

outcome 1= live birth that survived at least 28 days

date birth date where 1096=January1,1961

gestation length of gestation in days

sex infant's sex 1=male 2=female 9=unknown

wt birth weight in ounces (999 unknown)

parity total number of previous pregnancies including fetal deaths and still births, 99=unknown

race mother's race 0-5=white 6=mex 7=black 8=asian 9=mixed 99=unknown

age mother's age in years at termination of pregnancy, 99=unknown

ed mother's education 0= less than 8th grade, 1 = 8th -12th grade - did not graduate, 2= HS graduate–no other schooling , 3= HS+trade, 4=HS+some college 5= College graduate, 6&7 Trade school HS unclear, 9=unknown

ht mother's height in inches to the last completed inch 99=unknown

wt1 mother prepregnancy wt in pounds, 999=unknown

drace father's race, coding same as mother's race.

dage father's age, coding same as mother's age.

ded father's education, coding same as mother's education.

dht father's height, coding same as for mother's height

dwt father's weight coding same as for mother's weight

marital 1=married, 2= legally separated, 3= divorced, 4=widowed, 5=never married

inc family yearly income in \$2500 increments 0 = under 2500, 1=2500-4999, ..., 8= 12,500-14,999, 9=15000+, 98=unknown, 99=not asked

smoke does mother smoke? 0=never, 1= smokes now, 2=until current pregnancy, 3=once did, not now, 9=unknown

time If mother quit, how long ago? 0=never smoked, 1=still smokes, 2=during current preg, 3=within 1 yr, 4= 1 to 2 years ago, 5= 2 to 3 yr ago, 6= 3 to 4 yrs ago, 7=5 to 9yrs ago, 8=10+ysr ago, 9=quit and don't know, 98=unknown, 99=not asked

number number of cigs smoked per day for past and current smokers 0=never, 1=1-4,2=5-9, 3=10-14, 4=15-19, 5=20-29, 6=30-39, 7=40-60, 8=60+, 9=smoke but don't know,98=unknown, 99=not asked

Source

This dataset is found from <https://www.stat.berkeley.edu/users/statlabs/labs.html>. It accompanies the excellent text *Stat Labs: Mathematical Statistics through Applications* Springer-Verlag (2001) by Deborah Nolan and Terry Speed.

Examples

```
data(babies)
plot(wt ~ factor(smoke), data=babies)
plot(wt1 ~ dwt, data=babies, subset=wt1 < 800 & dwt < 800)
```

babyboom

Babyboom: data for 44 babies born in one 24-hour period.

Description

The babyboom dataset contains the time of birth, sex, and birth weight for 44 babies born in one 24-hour period at a hospital in Brisbane, Australia.

Usage

```
data(babyboom)
```

Format

A data frame with 44 observations on the following 4 variables.

clock.time Time on clock

gender a factor with levels girl boy

wt weight in grams of child

running.time minutes after midnight of birth

Source

This data set was submitted to the *Journal of Statistical Education*, <https://www.amstat.org/publications/jse/secure/v7n3/datasets.html> (now off-line), by Peter K. Dunn.

Examples

```
data(babyboom)
hist(babyboom$wt)
hist(diff(babyboom$running.time))
```

batting

Batting statistics for 2002 baseball season

Description

This dataset contains batting statistics for the 2002 baseball season. The data allows you to compute batting averages, on base percentages, and other statistics of interest to baseball fans. The data only contains players with more than 100 atbats for a team in the year. The data is excerpted with permission from the Lahman baseball database at www.seanlahman.com/ (no longer accessible).

Usage

```
data(batting)
```

Format

A data frame with 438 observations on the following 22 variables.

playerID This is coded, but those familiar with the players should be able to find their favorites.
yearID a numeric vector. Always 2002 in this dataset.
stintID a numeric vector. Player's stint (order of appearances within a season)
teamID a factor with Team
lgID a factor with levels AL NL
G number of games played
AB number of at bats
R number of runs
H number of hits
DOUBLE number of doubles. "2B" in original data base.
TRIPLE number of triples. "3B" in original data base
HR number of home runs
RBI number of runs batted in
SB number of stolen bases
CS number of times caught stealing
BB number of base on balls (walks)
SO number of strikeouts
IBB number of intentional walks
HBP number of hit by pitches
SH number of sacrifice hits
SF number of sacrifice flies
GIDP number of grounded into double plays

Details

Baseball fans are “statistics” crazy. They love to talk about things like RBIs, BAs and OBPs. In order to do so, they need the numbers. This data came from the Lahman baseball database at www.seanlahman.com/. The complete dataset includes data for all of baseball not just the year 2002 presented here.

Source

Lahman baseball database, www.seanlahman.com

References

In addition to the data set above, the book *Curve Ball*, by Albert, J. and Bennett, J., Copernicus Books, gives an extensive statistical analysis of baseball.

See <https://www.baseball-almanac.com/stats.shtml> for definitions of common baseball statistics.

Examples

```
data(batting)
attach(batting)
BA = H/AB # batting average
OBP = (H + BB + HBP) / (AB + BB + HBP + SF) # On base "percentage"
```

baycheck

Population estimate of type of Bay Checkerspot butterfly

Description

Estimates of the population of a type of Bay Checkerspot butterfly near San Francisco.

Usage

```
data(baycheck)
```

Format

A data frame with 27 observations on the following 2 variables.

year a numeric vector

Nt estimated number

Source

From chapter 4 of Morris and Doak, *Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis*, Sinauer Associates, 2003.

Examples

```
data(baycheck)
plot(Nt ~ year,baycheck)
## fit Ricker model  $N_{t+1} = N_t e^{-rt}W_t$ 
n = length(baycheck$year)
yt = with(baycheck,log(Nt[-1]/Nt[-n]))
nt = with(baycheck,Nt[-n])
lm(yt ~ nt,baycheck)
```

best.times

Best track and field times by age and distance

Description

A dataset giving world records in track and field running events for various distances and different age groups.

Usage

```
data(best.times)
```

Format

A data frame with 113 observations on the following 6 variables.

Dist Distance in meters (42195 is a marathon)

Name Name of record holder

Date Date of record

Time Time in seconds

Time.1 Time as character

age Age at time of record

Details

Age-graded race results allow competitors of different ages to compare their race performances. This data set allows one to see what the relationship is based on peak performances.

Source

The data came from <http://www.personal.rdg.ac.uk/~snsgrubb/athletics/agegroups.html> which included a calculator to compare results.

Examples

```
data(best.times)
attach(best.times)
by.dist = split(best.times, as.factor(Dist))
lm(scale(Time) ~ age, by.dist[['400']])
dists = names(by.dist)
lapply(dists, function(n) print(lm(scale(Time) ~ age, by.dist[[n]])))
```

blood

blood pressure readings

Description

blood pressure of 15 males taken by machine and expert

Usage

```
data(blood)
```

Format

This data frame contains the following columns:

Machine a numeric vector

Expert a numeric vector

Source

Taken from Kitchen's Exploring Statistics.

References

~~ possibly secondary sources and usages ~~

Examples

```
data(blood)
attach(blood)
t.test(Machine,Expert)
detach(blood)
```

breakdown	<i>Time of insulating fluid to breakdown</i>
-----------	--

Description

The time in minutes for an insulating fluid to break down under varying voltage loads

Usage

```
data(breakdown)
```

Format

A data frame with 75 observations on the following 2 variables.

voltage Number of kV

time time in minutes

Details

An example from industry where a linear model is used with replication and transformation of variables.

Source

Data is from Display 8.3 of Ramsay and Shafer, *The Statistical Sleuth* Duxbury Press, 1997.

Examples

```
data(breakdown)
plot(log(time) ~ voltage, data = breakdown)
```

bright.stars	<i>List of bright stars with Hipparcos catalog number</i>
--------------	---

Description

List of bright stars with Hipparcos catalog number.

Usage

```
data(bright.stars)
```

Format

A data frame with 96 observations on the following 2 variables.

name Common name of star

hip HIP number for identification

Details

The source of star names goes back to the Greeks and Arabs. Few are modern. This is a list of 96 common stars.

Source

From the Hipparcos website <http://astro.estec.esa.nl/Hipparcos/ident6.html>.

Examples

```
data(bright.stars)
all.names = paste(bright.stars$name, sep="", collapse="")
x = unlist(strsplit(tolower(all.names), ""))
letter.dist = sapply(letters, function(i) sum(x == i))
data(scrabble) # for frequency info
p = scrabble$frequency[1:26]; p=p/sum(p)
chisq.test(letter.dist, p=p) # compare with English
```

brightness

Brightness of 966 stars

Description

The Hipparcos Catalogue has information on over 100,000 stars. Listed in this dataset are brightness measurements for 966 stars from a given sector of the sky.

Usage

```
data(brightness)
```

Format

A univariate dataset of 966 numbers.

Details

This is field H5 in the catalog measuring the magnitude, V , in the Johnson UBV photometric system. The smaller numbers are for brighter stars.

Source

<http://astro.estec.esa.nl/hipparcos>

Examples

```
data(brightness)
hist(brightness)
```

bumpers

*Bumper repair costs for various automobiles***Description**

bumper repair costs

Usage

```
data(bumpers)
```

Format

Price in dollars to repair a bumper.

Source

From *Exploring Statistics*, Duxbury Press, 1998, L. Kitchens.

Examples

```
data(bumpers)
stem(bumpers)
```

BushApproval

*U.S. President George Bush approval ratings***Description**

Approval ratings as reported by six different polls.

Usage

```
data(BushApproval)
```

Format

A data frame with 323 observations on the following 3 variables.

date The date poll was begun (some take a few days)

approval a numeric number between 0 and 100

who a factor with levels fox gallup newsweek time.cnn upenn zogby

Details

A data set of approval ratings of George Bush over the time of his presidency, as reported by several agencies. Most polls were of size approximately 1,000 so the margin of error is about 3 percentage points.

Source

This data was found at <http://www.pollingreport.com/BushJob.htm>. The idea came from an article in *Salon* http://salon.com/opinion/feature/2004/02/09/bush_approval/index.html by James K. Galbraith.

Examples

```
data(BushApproval)
attach(BushApproval)

## Plot data with confidence intervals. Each poll gets different line type
## no points at first
plot(strptime(date,"%m/%d/%y"),approval,type="n",
      ylab = "Approval Rating",xlab="Date",
      ylim=c(30,100)
      )

## plot line for CI. Margin or error about 3
## matlines has trouble with dates from strptime()
colors = rainbow(6)

for(i in 1:nrow(BushApproval)) {
  lines(rep(strptime(date[i],"%m/%d/%y"),2),
        c(approval[i]-3,approval[i]+3),
        lty=as.numeric(who[i]),
        col=colors[as.numeric(who[i])]
        )

}

## plot points
points(strptime(date,"%m/%d/%y"),approval,pch=as.numeric(who))

## add legend
legend((2003-1970)*365*24*60*60,90,legend=as.character(levels(who)),lty=1:6,col=1:6)
detach(BushApproval)
```

Description

This data set from Hillborn and Mangel contains data on the number of Albatrosses accidentally caught while fishing by commercial fisheries.

Usage

```
data(bycatch)
```

Format

A data frame with 18 observations on the following 2 variables.

no.albatross The number of albatross caught

no.hauls Number of hauls with this many albatross caught

Details

During fishing operations non-target species are often captured. These are called “incidental catch”. In some cases, large-scale observer programs are used to monitor this incidental catch.

When fishing for squid, albatrosses are caught while feeding on the squid at the time of fishing. This feeding is encouraged while the net is being hauled in, as the squid are clustered making it an opportunistic time for the albatross to eat.

Source

This is from Hilborn and Mangel, *The Ecological Detective*, Princeton University Press, 1997. Original source of data is Bartle.

Examples

```
data(bycatch)
hauls = with(bycatch, rep(no.albatross,no.hauls))
```

cabinet

Estimated tax savings for US President Bush's cabinet

Description

Estimated savings from a repeal of the tax on capital gains and dividends for Bush's cabinet members.

Usage

```
data(cabinet)
```

Format

A data frame with 19 observations on the following 4 variables.

name Name of individual

position Position of individual

est.dividend.cg Estimated amount of dividend and capital gain income

est.tax.savings Estimated tax savings

Details

Quoting from the data source http://www.house.gov/reform/min/pdfs_108/pdf_inves/pdf_admin_tax_law_cabinet_june_3_re
(From Henry Waxman, congressional watchdog.)

“On May 22, 2003, the House of Representatives and the Senate passed tax legislation that included \$320 billion in tax cuts. The final tax cut bill was signed into law by President Bush on May 28, 2003. The largest component of the new tax law is the reduction of tax rates on both capital gains and dividend income. The law also includes the acceleration of future tax cuts, as well as new tax reductions for businesses.

This capital gains and dividend tax cut will have virtually no impact on the average American. The vast majority of Americans (88 percent) report no capital gains on their tax returns. These taxpayers will receive no tax savings at all from the reduction in taxes on capital gains. Similarly, most Americans (75 percent) will receive no tax savings from the reduction of taxes on dividends.

While the average American will derive little, if any, benefit from the cuts in dividend and capital gains taxes, the law offers significant benefits to the wealthy. For example, the top 1 percent of taxpayers will receive an average tax cut of almost \$21,000 each. In particular, some of the major beneficiaries of this plan will be Vice President Cheney, President Bush, and other members of the cabinet. Based on 2001 and 2002 dividends and capital gains income, Vice President Cheney, President Bush, and the cabinet are estimated to receive an average tax cut of at least \$42,000 per year. Their average tax savings equals the median household income in the United States.”

Source

From http://www.house.gov/reform/min/pdfs_108/pdf_inves/pdf_admin_tax_law_cabinet_june_3_rep.pdfx

Examples

```
data(cabinet)
attach(cabinet)
median(est.dividend.cg)
mean(est.dividend.cg)
detach(cabinet)
```

camp

Mount Campito Yearly Treering Data, -3435-1969.

Description

Contains annual tree-ring measurements from Mount Campito from 3426 BC through 1969 AD.

Usage

```
data(camp)
```

Format

A univariate time series with 5405 observations. The object is of class “ts”.

Details

This series is a standard example for the concept of long memory time series.

The data was produced and assembled at the Tree Ring Laboratory at the University of Arizona, Tuscon.

Source

Time Series Data Library:<https://robjhyndman.com/TSDL/>

References

This data set is in the *tseries* package. It is repackaged here for convenience only.

Examples

```
data(camp)
acf(camp)
```

cancer	<i>cancer survival times</i>
--------	------------------------------

Description

cancer survival times

Usage

```
data(cancer)
```

Format

The format is: The format is: List of 5 numeric components stomach, bronchus, colon, ovary and breast

Source

Taken from L. Kitchens, *Exploring Statistics*, Duxbury Press, 1997.

Examples

```
data(cancer)
boxplot(cancer)
```

carbon	<i>Carbon Monoxide levels at different sites</i>
--------	--

Description

Carbon Monoxide levels at different sites

Usage

```
data(carbon)
```

Format

This data frame contains the following columns:

Monoxide a numeric vector

Site a numeric vector

Source

Borrowed from Kitchen's Exploring Statistics

Examples

```
data(carbon)
boxplot(Monoxide ~ Site, data=carbon)
```

carsafety	<i>Fatality information in U.S. for several popular cars</i>
-----------	--

Description

Safety statistics appearing in a January 12th, 2004 issue of the *New Yorker* showing fatality rates per million vehicles both for drivers of a car, and drivers of other cars that are hit.

Usage

```
data(carsafety)
```

Format

A data frame with 33 observations on the following 4 variables.

Make.model The make and model of the car

type Type of car

Driver.deaths Number of drivers deaths per year if 1,000,000 cars were on the road

Other.deaths Number of deaths in other vehicle caused by accidents involving these cars per year if 1,000,000 cars were on the road

Details

The article this data came from wishes to make the case that SUVs are not safer despite a perception among the U.S. public that they are.

Source

From "Big and Bad" by Malcolm Gladwell. *New Yorker*, Jan. 12 2004 pp28-33. Data attributed to Tom Wenzel and Marc Ross who have written <https://www2.lbl.gov/Science-Articles/Archive/assets/images/2002/Aug-26-2002/SUV-report.pdf>.

Examples

```
data(carsafety)
plot(Driver.deaths + Other.deaths ~ type, data = carsafety)
plot(Driver.deaths + Other.deaths ~ type, data = carsafety)
```

central.park

Weather in Central Park NY in May 2003

Description

A listing of various weather measurements made at Central Park in New York City during the month of May 2003.

Usage

```
data(central.park)
```

Format

A data frame with 31 observations on the following 19 variables.

DY the day

MAX maximum temperature (temperatures in Farenheit)

MIN minimum temperature

AVG average temperature

DEP departure from normal

HDD heating degree days

CDD cooling degree days

WTR Water fall. A factor as "T" is a trace.

SNW Amount of snowfall

DPTH Depth of snow

SPD Average wind speed

SPD1 Max wind speed

DIR 2 minimum direction

MIN2 Sunshine measurement a factor with two levels 0 M

PSBL Sunshine measurement a factor with levels 0 M

S.S Sunshine measurement. 0-3 = Clear, 4-7 partly cloudy, 8-10 is cloudy

WX (This is not as documented in the data source. Ignore this variable. It should be: 1 = FOG, 2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS, 3 = THUNDER, 4 = ICE PELLETS, 5 = HAIL, 6 = GLAZE OR RIME, 7 = BLOWING DUST OR SAND: VSBY 1/2 MILE OR LESS, 8 = SMOKE OR HAZE, 9 = BLOWING SNOW, X = TORNADO)

SPD3 peak wind speed

DR direction of peak wind

Details

This datasets summarizes the weather in New York City during the merry month of May 2003. This data set comes from the daily climate report issued by the National Weather Service Office.

Source

This data was published on <http://www.noah.gov>

Examples

```
data(central.park)
attach(central.park)
barplot(rbind(MIN,MAX-MIN),ylim=c(0,80))
```

central.park.cloud *Type of day in Central Park, NY May 2003*

Description

The type of day in May 2003 in Central Park, NY

Usage

```
data(central.park.cloud)
```

Format

A factor with levels clear,partly.cloudy and cloudy.

Source

This type of data, and much more, is (was) available from <https://www.noaa.gov>.

Examples

```
data(central.park.cloud)
table(central.park.cloud)
```

ceo2013

*CEO compensation in 2013***Description**

Data on top 200 CEO compensations in the year 2013

Usage

```
data(ceo2013)
```

Format

a data frame.

Source

Scraped from <https://archive.nytimes.com/www.nytimes.com/interactive/2013/06/30/business/executive-compensation-tables.html?ref=business>

Examples

```
data(ceo2013)
```

cfb

*Bootstrap sample from the Survey of Consumer Finances***Description**

A bootstrap sample from the “Survey of Consumer Finances”.

Usage

```
data(cfb)
```

Format

A data frame with 1000 observations on the following 14 variables.

WGT Weights to compensate for undersampling. Not applicable

AGE Age of participants

EDUC Education level (number of years) of participant

INCOME Income in year 2001 of participant

CHECKING Amount in checking account for participant

SAVING Amount in savings accounts

NMMF Total directly-held mutual funds
STOCKS Amount held in stocks
FIN Total financial assets
VEHIC Value of all vehicles (includes autos, motor homes, RVs, airplanes, boats)
HOMEEQ Total home equity
OTHNFIN Other financial assets
DEBT Total debt
NETWORTH Total net worth

Details

The SCF dataset is a comprehensive survey of consumer finances sponsored by the United States Federal Reserve, <https://www.federalreserve.gov/pubs/oss/oss2/2001/scf2001home.html>.

The data is oversampled to compensate for low response in the upper brackets. To compensate, weights are assigned. By bootstrapping the data with the weights, we get a “better” version of a random sample from the population.

Source

<https://www.federalreserve.gov/pubs/oss/oss2/2001/scf2001home.html>

Examples

```
data(cfb)
attach(cfb)
mean(INCOME)
```

chicken	<i>weight gain of chickens fed 3 different rations</i>
---------	--

Description

weight gain of chickens fed 3 different rations

Usage

```
data(chicken)
```

Format

This data frame contains the following columns:

Ration1 a numeric vector
Ration2 a numeric vector
Ration3 a numeric vector

Source

From Kitchens' Exploring Statistics.

Examples

```
data(chicken)
boxplot(chicken)
```

chips	<i>Measurements of chip wafers</i>
-------	------------------------------------

Description

The chips data frame has 30 rows and 8 columns.

Usage

```
data(chips)
```

Format

This data frame contains the following columns:

wafer11 a numeric vector
wafer12 a numeric vector
wafer13 a numeric vector
wafer14 a numeric vector
wafer21 a numeric vector
wafer22 a numeric vector
wafer23 a numeric vector
wafer24 a numeric vector

Source

From Kitchens' Exploring Statistics

Examples

```
data(chips)
boxplot(chips)
```

co2emiss*Carbon Dioxide Emissions from the U.S.A. from fossil fuel*

Description

Carbon Dioxide Emissions from the U.S.A. from fossil fuel

Usage

```
data(co2emiss)
```

Format

The format is: Time-Series [1:276] from 1981 to 2004: -30.5 -30.4 -30.3 -29.8 -29.6 ...

Details

Monthly estimates of 13C/12C in fossil-fuel CO₂ emissions. Originally at http://cdiac.esd.ornl.gov/trends/emis_mon/emis_mon_c13.dat now off-line.

At one time: "An annual cycle, peaking during the winter months and reflecting natural gas consumption, and a semi-annual cycle of lesser amplitude, peaking in summer and winter and reflecting coal consumption, comprise the dominant features of the annual pattern. The relatively constant emissions until 1987, followed by an increase from 1987-1989, a decrease in 1990-1991 and record highs during the late 1990s, are also evident in the annual data of Marland et al. However, emissions have declined somewhat since 2000."

Source

http://cdiac.esd.ornl.gov/ftp/trends/emis_mon/emis_mon_c13.dat (off-line)

Examples

```
data(co2emiss)
monthplot(co2emiss)
stl(co2emiss, s.window="periodic")
```

coins*The coins in my change bin*

Description

The coins in author's change bin with year and value.

Usage

```
data(coins)
```

Format

A data frame with 371 observations on the following 2 variables.

year Year of coin

value Value of coin: quarter, dime, nickel, or penny

Examples

```
data(coins)
years = cut(coins$year,seq(1920,2010),by=10),include.lowest=TRUE,
       labels = paste(192:200,"*",sep=""))
table(years)
```

coldvermont

Daily minimum temperature in Woodstock Vermont

Description

Recordings of daily minimum temperature in Woodstock Vermont from January 1 1980 through 1985.

Usage

```
data(coldvermont)
```

Format

A ts object with daily frequency

Source

Extracted from http://www.ce.washington.edu/pub/HYDRO/edm/met_thru_97/vttmin.dly.gz. Errors were possibly introduced.

Examples

```
data(coldvermont)
plot(coldvermont)
```

confint.htest*Produce confidence interval for objects of class htest*

Description

Simple means to output a confidence interval for an `htest` object.

Usage

```
## S3 method for class 'htest'  
confint(object, parm, level, ...)
```

Arguments

<code>object</code>	A object of class <code>htest</code> , such as output from <code>t.test</code> .
<code>parm</code>	ignored
<code>level</code>	ignored
<code>...</code>	can pass in function to transform via <code>transform</code> argument.

Value

No return value, outputs interval through `cat`.

Examples

```
confint(t.test(rnorm(10)))
```

corn*Comparison of corn for new and standard variety*

Description

Comparison of corn for new and standard variety

Usage

```
data(corn)
```

Format

This data frame contains the following columns:

New a numeric vector

Standard a numeric vector

Source

From Kitchens' Exploring Statistics

Examples

```
data(corn)
t.test(corn)
```

crime	<i>violent crime rates in 50 states of US</i>
-------	---

Description

crime rates for 50 states in 1983 and 1993

Usage

```
data(crime)
```

Format

This data frame contains the following columns:

y1983 a numeric vector
y1993 a numeric vector

Source

from Kitchens' Exploring Statistics

Examples

```
data(crime)
boxplot(crime)
t.test(crime[,1],crime[,2],paired=TRUE)
```

deflection	<i>Deflection under load</i>
------------	------------------------------

Description

The data collected in a calibration experiment consisting of a known load, applied to the load cell, and the corresponding deflection of the cell from its nominal position.

Usage

```
data(deflection)
```

Format

A data frame with 40 observations on the following 2 variables.

Deflection a numeric vector

Load a numeric vector

Source

From an example in *Engineering Statistics Handbook* from <http://www.itl.nist.gov/div898/handbook/>

Examples

```
data(deflection)
res = lm(Deflection ~ Load, data = deflection)
plot(Deflection ~ Load, data = deflection)
abline(res) # looks good?
plot(res)
```

demos	<i>Provide menu for possible shiny demonstrations</i>
-------	---

Description

Provides a menu to open one of the provided demonstrations which use **shiny** for animation.

Usage

```
demos()
```

Details

User must have installed **shiny** prior to usage. As **shiny** has some dependencies that don't always work, this package is not a dependency of **UsingR**.

Value

No return value, when called a web page opens. Use Ctrl-C (or equivalent) in terminal to return to an interactive session.

Examples

```
## demos()
```

DensityPlot

Plots densities of data

Description

Allows one to compare empirical densities of different distributions in a simple manner. The density is used as graphs with multiple histograms are too crowded. The usage is similar to side-by-side boxplots.

Usage

```
DensityPlot(x, ...)
```

Arguments

- x x may be a sequence of data vectors (eg. x,y,z), a data frame with numeric column vectors or a model formula
- ... You can pass in a bandwidth argument such as bw="SJ". See density for details. A legend will be placed for you automatically. To override the positioning set do.legend="manual". To skip the legend, set do.legend=FALSE.

Value

Makes a plot

Author(s)

John Verzani

References

Basically a modified boxplot function. As well it should be as it serves the same utility: comparing distributions.

See Also

[boxplot](#),[violinplot](#),[density](#)

Examples

```
## taken from boxplot
## using a formula
data(InsectSprays)
DensityPlot(count ~ spray, data = InsectSprays)
## on a matrix (data frame)
mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),
             T5 = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
DensityPlot(data.frame(mat))
```

diamond

Price by size for diamond rings

Description

A data set on 48 diamond rings containing price in Singapore dollars and size of diamond in carats.

Usage

```
data(diamond)
```

Format

A data frame with 48 observations on the following 2 variables.

carat A measurement of a diamond's size

price Price in Singapore dollars

Details

This data comes from a collection of the *Journal of Statistics Education*. The accompanying documentation says:

“Data presented in a newspaper advertisement suggest the use of simple linear regression to relate the prices of diamond rings to the weights of their diamond stones. The intercept of the resulting regression line is negative and significantly different from zero. This finding raises questions about an assumed pricing mechanism and motivates consideration of remedial actions.”

Source

This comes from <https://jse.amstat.org/datasets/diamond.txt>. Data set is contributed by Singfat Chu.

Examples

```
data(diamond)
plot(price ~ carat, diamond, pch=5)
```

divorce	<i>Time until divorce for divorced women (by age)</i>
---------	---

Description

The divorce data frame has 25 rows and 6 columns.

Usage

```
data(divorce)
```

Format

This data frame contains the following columns:

time of divorce a factor
all ages a numeric vector
0-17 a numeric vector
18-19 a numeric vector
20-24 a numeric vector
25-100 a numeric vector

Source

Forgot source

Examples

```
data(divorce)
apply(divorce[,2:6],2,sum) # percent divorced by age of marriage
```

DOTplot	<i>Make big DOT plot like stripchart</i>
---------	--

Description

A variant of the `stripchart` using big dots as the default.

Usage

```
DOTplot(x, ...)
```

Arguments

x May be a vector, data frame, matrix (each column a variable), list or model formula. Treats each variable or group as a univariate dataset and makes corresponding DOTplot.

... arguments passed onto **points**.

Value

Returns the graphic only.

Author(s)

John Verzani

See Also

See also as [stripchart](#), [dotplot](#)

Examples

```
x = c(1,1,2,3,5,8)
DOTplot(x,main="Fibonacci",cex=2)
```

dottodot

Dot-to-dot puzzle

Description

A set of points to make a dot-to-dot puzzle

Usage

```
data(dottodot)
```

Format

A data frame with 49 observations on the following 4 variables.

- x** x position
- y** y position
- pos** where to put label
- ind** number for label

Details

Points to make a dot to dot puzzle to illustrate, [text](#), [points](#), and the argument **pos**.

Source

Illustration by Noah Verzani.

Examples

```
data(dottodot)
# make a blank graph
plot(y~x,data=dottodot,type="n",bty="n",xaxt="n",xlab="",yaxt="n",ylab="")
# add the points
points(y~x,data=dottodot)
# add the labels using pos argument
with(dottodot, text(x,y,labels=ind,pos=pos))
# solve the puzzle
lines(y~x, data=dottodot)
```

dowdata

The Dow Jones average from Jan 1999 to October 2000

Description

The dowdata data frame has 443 rows and 5 columns.

Usage

```
data(dowdata)
```

Format

This data frame contains the following columns:

Open a numeric vector
High a numeric vector
Date a numeric vector
Low a numeric vector
Close a numeric vector

Source

this data comes from the site <http://www.forecasts.org/>

Examples

```
data(dowdata)
the.close <- dowdata$Close
n <- length(the.close)
plot(log(the.close[2:n]/the.close[1:(n-1)]))
```

dvdsales

Monthly DVD player sales since introduction to May 2004

Description

Monthly DVD player sales since introduction of DVD format to May 2004

Usage

```
data(dvdsales)
```

Format

Matrix with rows recording the year, and columns the month.

Source

Original data retrieved from <http://www.thedigitalbits.com/articles/cemadvdsales.html>

Examples

```
data(dvdsales)
barplot(t(dvdsales[7:1,]),beside=TRUE)
```

emissions

CO2 emissions data and gross domestic product for 26 countries

Description

The emissions data frame has 26 rows and 3 columns.

A data set listing GDP, GDP per capita, and CO2 emissions for 1999.

Usage

```
data(emissions)
```

Format

This data frame contains the following columns:

GDP a numeric vector

perCapita a numeric vector

CO2 a numeric vector

Source

<http://www.grida.no> for CO2 data and <http://www.mrdowling.com> for GDP data.

Prompted by a plot appearing in a June 2001 issue of the *New York Times*.

Examples

```
data(emissions)
plot(emissions)
```

errata

*Show errata***Description**

Show errata

Usage

```
errata()
```

Value

opens browse to errata page

ewr

*Taxi in and taxi out times at EWR (Newark) airport for 1999-2001***Description**

The ewr data frame has 46 rows and 11 columns.

Gives taxi in and taxi out times for 8 different airlines and several months at EWR airport.

Airline codes are AA (American Airlines), AQ (Aloha Airlines), AS (Alaska Airlines), CO (Continental Airlines), DL (Delta Airlines), HP (America West Airlines), NW (Northwest Airlines), TW (Trans World Airlines), UA (United Airlines), US (US Airways), and WN (Southwest Airlines)

Usage

```
data(ewr)
```

Format

This data frame contains the following columns:

Year a numeric vector
Month a factor for months
AA a numeric vector
CO a numeric vector
DL a numeric vector
HP a numeric vector
NW a numeric vector
TW a numeric vector
UA a numeric vector
US a numeric vector
inorout a factor with levels in or out

Source

Retrieved from <http://www.bts.gov/oai/taxitime/html/ewrtaxi.html>

Examples

```
data(ewr)
boxplot(ewr[3:10])
```

exec.pay

Direct compensation for 199 United States CEOs in the year 2000

Description

Direct compensation for 199 United States CEOs in the year 2000 in units of \$10,000.

Usage

```
data(exec.pay)
```

Format

A numeric vector with 199 entries each measuring compensation in 10,000s of dollars.

Source

New York Times Business section 04/01/2001.

Examples

```
data(exec.pay)
hist(exec.pay)
```

fat*Body measurements to predict percentage of body fat in males*

Description

A data set containing many physical measurements of 252 males. Most of the variables can be measured with a scale or tape measure. Can they be used to predict the percentage of body fat? If so, this offers an easy alternative to an underwater weighing technique.

Usage

```
data(fat)
```

Format

A data frame with 252 observations on the following 19 variables.

case Case Number

body.fat Percent body fat using Brozek's equation, $457/\text{Density} - 414.2$

body.fat.siri Percent body fat using Siri's equation, $495/\text{Density} - 450$

density Density (gm/cm²)

age Age (yrs)

weight Weight (lbs)

height Height (inches)

BMI Adiposity index = Weight/Height² (kg/m²)

ffweight Fat Free Weight = $(1 - \text{fraction of body fat}) * \text{Weight}$, using Brozek's formula (lbs)

neck Neck circumference (cm)

chest Chest circumference (cm)

abdomen Abdomen circumference (cm) "at the umbilicus and level with the iliac crest"

hip Hip circumference (cm)

thigh Thigh circumference (cm)

knee Knee circumference (cm)

ankle Ankle circumference (cm)

bicep Extended biceps circumference (cm)

forearm Forearm circumference (cm)

wrist Wrist circumference (cm) "distal to the styloid processes"

Details

From the source:

"The data are as received from Dr. Fisher. Note, however, that there are a few errors. The body densities for cases 48, 76, and 96, for instance, each seem to have one digit in error as can be seen from the two body fat percentage values. Also note the presence of a man (case 42) over 200 pounds in weight who is less than 3 feet tall (the height should presumably be 69.5 inches, not 29.5 inches)! The percent body fat estimates are truncated to zero when negative (case 182)."

Source

This data set comes from the collection of the *Journal of Statistics Education* at <https://jse.amstat.org/datasets/fat.txt>. The data set was contributed by Roger W. Johnson.

References

The source of the data is attributed to Dr. A. Garth Fisher, Human Performance Research Center, Brigham Young University, Provo, Utah 84602,

Examples

```
data(fat)
f = body.fat ~ age + weight + height + BMI + neck + chest + abdomen +
    hip + thigh + knee + ankle + bicep + forearm + wrist
res = lm(f, data=fat)
summary(res)
```

father.son

Pearson's data set on heights of fathers and their sons

Description

1078 measurements of a father's height and his son's height.

Usage

```
data(father.son)
```

Format

A data frame with 1078 observations on the following 2 variables.

fheight Father's height in inches

sheight Son's height in inches

Details

Data set used by Pearson to investigate regression. See data set galton for data set used by Galton.

Source

Read into R by the command

```
read.table("http://stat-www.berkeley.edu/users/juliab/141C/pearson.dat", sep=" ")
as mentioned by Chuck Cleland on the r-help mailing list.
```

Examples

```
data(father.son)
## like cover of Freedman, Pisani, and Purves
plot(sheight ~ fheight, data=father.son,bty="1",pch=20)
abline(a=0,b=1,lty=2,lwd=2)
abline(lm(sheight ~ fheight, data=father.son),lty=1,lwd=2)
```

female.inc

Income distribution for females in 2001

Description

A data set containing incomes for 1,000 females along with race information. The data is sampled from data provided by the United States Census Bureau.

Usage

```
data(female.inc)
```

Format

A data frame with 1,000 observations on the following 2 variables.

income Income for 2001 in dollars

race a factor with levels black, hispanic or white

Details

The United States Census Bureau provides a lot of data on income distributions. This data comes from the Current Population Survey (CPS) for the year 2001. The raw data appears in table format. This data is sampled from the data in that table.

Source

The original table was found at http://ferret.bls.census.gov/macro/032002/perinc/new11_002.htm

Examples

```
data(female.inc)
boxplot(income ~ race, female.inc)
boxplot(log(income,10) ~ race, female.inc)
sapply(with(female.inc,split(income,race)),median)
```

firstchi*Age of mother at birth of first child*

Description

Age of mother at birth of first child

Usage

```
data(firstchi)
```

Format

The format is: num [1:87] 30 18 35 22 23 22 36 24 23 28 ...

Source

From *Exploring Statistics*, L. Kitchens, Duxbury Press, 1998.

Examples

```
data(firstchi)
hist(firstchi)
```

five.yr.temperature*Five years of weather in New York City*

Description

Five years of maximum temperatures in New York City

Usage

```
data(five.yr.temperature)
```

Format

A data frame with 2,439 observations on the following 3 variables.

days Which day of the year

years The year

temps Maximum temperature

Source

Dataset found on the internet, but original source is lost.

Examples

```
data(five.yr.temperature)
attach(five.yr.temperature)
scatter.smooth(temp ~ days, col=gray(.75))
lines(smooth.spline(temp ~ days), lty=2)
lines(supsmu(days, temp), lty=3)
```

florida

County-by-county results of year 2000 US presidential election in Florida

Description

The `florida` data frame has 67 rows and 13 columns.

Gives a county by county accounting of the US elections in the state of Florida.

Usage

```
data(florida)
```

Format

This data frame contains the following columns:

County Name of county
GORE Votes for Gore
BUSH Votes for Bush
BUCHANAN Votes for Buchanan
NADER Votes for Nader
BROWN a numeric vector
HAGELIN a numeric vector
HARRIS a numeric vector
MCREYNOLDS a numeric vector
MOOREHEAD a numeric vector
PHILLIPS a numeric vector
Total a numeric vector

Source

Found in the excellent notes *Using R for Data Analysis and Graphics* by John Maindonald. (As of 2003 a book published by Cambridge University Press.)

Examples

```
data(florida)
attach(florida)
result.lm <- lm(BUCHANAN ~ BUSH)
plot(BUSH, BUCHANAN)
abline(result.lm) ## can you find Palm Beach and Miami Dade counties?
```

galileo

Galileo data on falling bodies

Description

Data recorded by Galileo in 1609 during his investigations of the trajectory of a falling body.

Usage

```
data(galileo)
```

Format

A data frame with 7 observations on the following 2 variables.

init.h Initial height of ball

h.d Horizontal distance traveled

Details

A simple ramp 500 punti above the ground was constructed. A ball was placed on the ramp at an indicated height from the ground and released. The horizontal distance traveled is recorded (in punti). (One punto is 169/180 millimeter, not a car by FIAT.)

Source

This data and example come from the *Statistical Sleuth* by Ramsey and Schafer, Duxbury (2001), section 10.1.1. They attribute an article in *Scientific American* by Drake and MacLachlan.

Examples

```
data(galileo)
polynomial = function(x, coefs) {
  sum = 0
  for(i in 0:(length(coefs)-1)) {
    sum = sum + coefs[i+1]*x^i
  }
  sum
}
res.lm = lm(h.d ~ init.h, data = galileo)
res.lm2 = update(res.lm, . ~ . + I(init.h^2), data=galileo)
res.lm3 = update(res.lm2, . ~ . + I(init.h^3), data=galileo)
```

```
plot(h.d ~ init.h, data = galileo)
curve(polynomial(x,coef(res.lm)),add=TRUE)
curve(polynomial(x,coef(res.lm2)),add=TRUE)
curve(polynomial(x,coef(res.lm3)),add=TRUE)
```

galton

Galton's height data for parents and children

Description

Data set from tabulated data set used by Galton in 1885 to study the relationship between a parent's height and their childrens.

Usage

```
data(galton)
```

Format

A data frame with 928 observations on the following 2 variables.

child The child's height

parent The “midparent” height

Details

The midparent's height is an average of the fathers height and 1.08 times the mother's. In the data there are 205 different parents and 928 children. The data here is truncated at the ends for both parents and children so that it can be treated as numeric data. The data were tabulated and consequently made discrete. The `father.son` data set is similar data used by Galton and is continuous.

Source

This data was found at <http://www.bun.kyoto-u.ac.jp/~suchii/galton86.html>.

See also the data.set `father.son` which was found from <http://stat-www.berkeley.edu/users/juliab/141C/pearson.dat>.

Examples

```
data(galton)
plot(galton)
## or with some jitter.
plot(jitter(child,5) ~ jitter(parent,5),galton)
## sunflowerplot shows flowers for multiple plots (Thanks MM)
sunflowerplot(galton)
```

gap	<i>Sales data for the Gap</i>
-----	-------------------------------

Description

Sales data for the Gap from Jan

Usage

```
data(gap)
```

Format

The format is a ts object storing data from June 2002 through June 2005.

Source

<http://home.businesswire.com>

Examples

```
data(gap)
monthplot(gap)
```

gasprices	<i>Monthly average gasoline prices in the United States</i>
-----------	---

Description

Average retail gasoline prices per month in the United States from January 2000 through February 2006. The hurricane Katrina caused a percentage loss of refinery capability leading to rapidly increasing prices.

Usage

```
data(gasprices)
```

Format

The format is: Time-Series [1:74] from 2000 to 2006: 129 138 152 146 148 ...

Source

Oringally from the Department of Energy web site: <https://www.eia.gov/petroleum/gasdiesel/>

Examples

```
data(gasprices)
plot(gasprices)
```

getAnswer	<i>function to get answer to problem</i>
-----------	--

Description

Returns answers for the first edition.

Usage

```
getAnswer(chapter = NULL, problem = NULL)
```

Arguments

chapter	which chapter
problem	which problem

Value

opens web page to answer

goalspergame	<i>Goals per game in NHL</i>
--------------	------------------------------

Description

Goals per game in NHL

Usage

```
data(goalspergame)
```

Format

The format is: mts [1:53, 1:4] 6 6 6 6 6 6 6 6 ... - attr(*, "dimnames")=List of 2 ..\$: NULL ..\$: chr [1:4] "n.teams" "n.games" "n.goals" "gpg" - attr(*, "tsp")= num [1:3] 1946 1998 1 - attr(*, "class")= chr [1:2] "mts" "ts"

Source

Off internet site. Forgot which.

Examples

```
data(goalspergame)
```

google

Google stock values during 2005-02-07 to 2005-07-07

Description

Closing stock price of a share of Google stock during 2005-02-07 to 2005-07-07

Usage

```
data(google)
```

Format

A data vector of numeric values with names attribute giving the dates.

Source

finance.yahoo.com

Examples

```
data(google)
plot(google, type="l")
```

grades

Current and previous grades

Description

A data frame of a student's grade and their grade in their previous class. Graded on American A-F scale.

Usage

```
data(grades)
```

Format

A data frame of 122 rows with 2 columns

prev The grade in the previous class in the subject matter

grade The grade in the current class

Examples

```
data(grades)
table(grades)
```

grip*Effects of cross-country ski-pole grip*

Description

Simulated data set investigating effects of cross-country ski-pole grip.

Usage

```
data(grip)
```

Format

A data frame with 36 observations on the following 4 variables.

UBP Measurement of upper-body power

person One of four skiers

grip.type Either classic, modern, or integrated.

replicate a numeric vector

Details

Based on a study originally described at <http://www.montana.edu/wwwihhd/movementscilib/> and mentioned on <http://www.xcskiworld.com/>. The study investigated the effect of grip type on upper body power. As this influences performance in races, presumably a skier would prefer the grip that provides the best power output.

Examples

```
data(grip)
ftable(xtabs(UBP ~ person + replicate + grip.type,grip))
```

hall.fame*Data frame containing baseball statistics including Hall of Fame membership*

Description

A data frame containing baseball statistics for several players.

Usage

```
data(hall.fame)
```

Format

A data frame with 1340 observations on the following 28 variables.

first first name
last last name
seasons Seasons played
games Games played
AB Official At Bats
runs Runs scored
hits hits
doubles doubles
triples triples numeric vector
HR Home runs
RBI Runs batted in
BB Base on balls
SO Strike outs
BA Batting Average
OBP On Base percentage
SP Slugging Percentage
AP Adjusted productions
BR batting runs
ABRuns adjusted batting runs
Runs.Created Runs created
SB Stolen Bases
CS Caught stealing
Stolen.Base.Runs Runs scored by stealing
Fielding.Average Fielding average
Fielding.Runs Fielding runs
Primary.Position.Played C = Catcher, 1 = First Base, 2 = Second Base, 3 = Third Base, S = Shortstop, O = Outfield, and D = Designated hitter
Total.Player.Rating a numeric vector
Hall.Fame.Membership Not a member, Elected by the BBWAA, or Chosen by the Old Timers Committee or Veterans Committee

Details

The sport of baseball lends itself to the collection of data. This data set contains many variables used to assess a players career. The Hall of Fame is reserved for outstanding players as judged initially by the Baseball Writers Association and subsequently by the Veterans Committee.

Source

This data set was submitted to the *Journal of Statistical Education*, <https://www.amstat.org/publications/jse/secure/v8n2/datasets.html> (now off-line), by James J. Cochran.

Examples

```
data(hall.fame)
hist(hall.fame$OBP)
with(hall.fame, last[Hall.Fame.Membership != "not a member"])
```

headtail

*Show head and tail***Description**

helper function to shorten display of a data frame

Usage

```
headtail(x, k = 3)
```

Arguments

x	a data frame
k	number of rows at top and bottom to show.

Value

No return value. Uses cat to show data

Examples

```
headtail(mtcars)
```

healthy

*Healthy or not?***Description**

Data on whether a patient is healthy with two covariates.

Usage

```
data(healthy)
```

Format

A data frame with 32 observations on the following 3 variables.

- p** One covariate
- g** Another covariate
- healthy** 0 is healthy, 1 is not

Details

Data on health with information from two unspecified covariates.

Examples

```
data(healthy)
library(MASS)
stepAIC(glm(healthy ~ p + g, healthy, family=binomial))
```

heartrate	<i>Simulated data of age vs. max heart rate</i>
-----------	---

Description

Simulated data of age vs. max heart rate

Usage

```
data(heartrate)
```

Format

This data frame contains the following columns:

- age** a numeric vector
- maxrate** a numeric vector

Details

Does this fit the workout room value of 220 - age?

Source

Simulated based on “Age-predicted maximal heart rate revisited” Hirofumi Tanaka, Kevin D. Monahan, Douglas R. Seals *Journal of the American College of Cardiology*, 37:1:153-156.

Examples

```
data(heartrate)
plot(heartrate)
abline(lm(maxrate ~ age, data=heartrate))
```

home	<i>Maplewood NJ homedata</i>
------	------------------------------

Description

The home data frame has 15 rows and 2 columns.

Usage

```
data(home)
```

Format

This data frame contains the following columns:

old a numeric vector

new a numeric vector

Details

See full dataset homedata

Source

See full dataset homedata

Examples

```
data(home)
## compare on the same scale
boxplot(data.frame(scale(home)))
```

homedata	<i>Maplewood NJ assessed values for years 1970 and 2000</i>
----------	---

Description

The homedata data frame has 6841 rows and 2 columns.

Data set containing assessed values of homes in Maplewood NJ for the years 1970 and 2000. The properties were not officially assessed during that time and it is interesting to see the change in percentage appreciation.

Usage

```
data(homedata)
```

Format

This data frame contains the following columns:

- y1970** a numeric vector
- y2000** a numeric vector

Source

Maplewood Reval

Examples

```
data(homedata)
plot(homedata)
```

homeprice

Sale price of homes in New Jersey in the year 2001

Description

The homeprice data frame has 29 rows and 7 columns.

Usage

```
data(homeprice)
```

Format

This data frame contains the following columns:

- list** list price of home (in thousands)
- sale** actual sale price
- full** Number of full bathrooms
- half** number of half bathrooms
- bedrooms** number of bedrooms
- rooms** total number of rooms
- neighborhood** Subjective assessment of neighborhood on scale of 1-5

Details

This dataset is a random sampling of the homes sold in Maplewood, NJ during the year 2001. Of course the prices will either seem incredibly high or fantastically cheap depending on where you live, and if you have recently purchased a home.

Source

Source Burgdorff Realty.

Examples

```
data(homeprice)
plot(homeprice$sale,homeprice$list)
abline(lm(homeprice$list~homeprice$sale))
```

homework

Homework averages for Private and Public schools

Description

Homework averages for Private and Public schools

Usage

```
data(homework)
```

Format

This data frame contains the following columns:

Private a numeric vector

Public a numeric vector

Source

This is from Kitchens Exploring Statistics

Examples

```
data(homework)
boxplot(homework)
```

HUMMER

Deliveries of new HUMMER vehicles

Description

Gives monthly delivery numbers for new HUMMER vehicles from June 2003 through February 2006. During July, August, and September 2005 there was an Employee Pricing Incentive.

Usage

```
data(HUMMER)
```

Format

The format is: Time-Series [1:33] from 2003 to 2006: 2493 2654 2987 2837 3157 2837 3157 1927 2141 2334 ...

Source

Compiled from delivery data available at http://www.gm.com/company/investor_information/sales_prod/hist_sales.html

Examples

```
data(HUMMER)
plot(HUMMER)
```

income_percentiles *Top percentiles of U.S. income*

Description

Top percentiles of U.S. income

Usage

```
data(income_percentiles)
```

Format

A data frame with Year and various percentile (90th, 95th, ...)

Source

Not available

Examples

```
data(income_percentiles)
```

iq	<i>IQ scores</i>
-----------	------------------

Description

simulated IQ scores

Usage

```
data(iq)
```

Format

The format is: num [1:100] 72 75 77 77 81 82 83 84 84 86 ...

Source

From Kitchens Exploring Statistics

Examples

```
data(iq)
qqnorm(iq)
```

kid.weights	<i>Weight and height measurement for a sample of U.S. children</i>
--------------------	--

Description

A sample from the data presented in the NHANES III survey (<https://www.cdc.gov/nchs/nhanes.htm>). This survey is used to form the CDC Growth Charts (<https://www.cdc.gov/growthcharts/>) for children.

Usage

```
data(kid.weights)
```

Format

A data frame with 250 observations on the following 4 variables.

age Age in months

weight weight in pounds

height height in inches

gender Male or Female

Source

This data is extracted from the NHANES III survey: <https://www.cdc.gov/nchs/nhanes.htm>.

Examples

```
data(kid.weights)
attach(kid.weights)
plot(weight,height,pch=as.character(gender))
## find the BMI -- body mass index
m.ht = height*2.54/100      # 2.54 cm per inch
m.wt = weight / 2.2046      # 2.2046 lbs. per kg
bmi = m.wt/m.ht^2
hist(bmi)
```

KSI

Data set on automobile deaths and injuries in Great Britain

Description

Data on car drivers killed, car drivers killed or seriously injured (KSI), and light goods drivers killed during the years 1969 to 1984 in Great Britain. In February 1982 a compulsory seat belt law was introduced.

Usage

```
data(KSI)
```

Format

The data is stored as a multi-variate zoo object.

Source

Data copied from Appendix 2 "Forecasting, structural time series, models and the Kalman Filter" by Andrew Harvey. The `lg.k` data is also found in the `vandrivers` dataset contained in the `sspir` package.

References

Source: HMSO: Road Accidents in Great Britain 1984.

Examples

```
data(KSI)
plot(KSI)
seatbelt = time(KSI) < 1983 + (2-1)/12
```

last.tie	<i>Last tie in 100 coin tosses</i>
----------	------------------------------------

Description

Toss a coin 100 times and keep a running count of the number of heads and the number of tails. Record the times when the number is tied and report the last one. The distribution will have an approximate “arc-sine” law or well-shaped distribution.

Usage

```
data(last.tie)
```

Format

200 numbers between 0 and 100 indicating when the last tie was.

Details

This data comes from simulating the commands: `x = cumsum(sample(c(-1,1),100,replace=T))` and then finding the last tie with
`last.tie[i]<-max(0,max(which(!sign(x) == sign(x[length(x)]))))`.

Examples

```
data(last.tie)
hist(last.tie)
```

lawsuits	<i>Law suit settlements</i>
----------	-----------------------------

Description

A simulated dataset on the settlement amount of 250 lawsuits based on values reported by Class Action Reports.

Usage

```
data(lawsuits)
```

Format

The format is: num [1:250] 16763 10489 17693 14268 442 ...

Details

Class Action Reports completed an extensive survey of attorney fee awards from 1,120 common fund class actions (Volume 24, No. 2, March/April 2003). The full data set is available for a fee. This data is simulated from the values published in an excerpt.

Source

Original data from <http://www.classactionreports.com/classactionreports/attorneyfee.htm>

References

See also "Study Disputes View of Costly Surge in Class-Action Suits" by Jonathan D. Glater in the January 14, 2004 New York Times which cites a Jan. 2004 paper in the *Journal of Empirical Legal Studies* by Eisenberg and Miller.

Examples

```
data(lawsuits)
mean(lawsuits)
median(lawsuits)
```

lorem

Placeholder text

Description

Lorem Ipsum is simply dummy text of the printing and typesetting industry.

Usage

lorem

Format

a character string

Source

<https://www.lipsum.com/>

Examples

```
table(unlist(strsplit(lorem, "")))
```

malpract	<i>malpractice settlements</i>
----------	--------------------------------

Description

malpractice settlements

Usage

```
data(malpract)
```

Format

The format is: num [1:17] 760 380 125 250 2800 450 100 150 2000 180 ...

Source

From Kitchens Exploring Statistics

Examples

```
data(malpract)
boxplot(malpract)
```

mandms	<i>Proportions of colors in various M and M's varieties</i>
--------	---

Description

A bag of the candy M and M's has many different colors. Each large production batch is blended to the ratios given in this data set. The batches are thoroughly mixed and then the individual packages are filled by weight using high-speed equipment, not by count.

Usage

```
data(mandms)
```

Format

A data frame with 5 observations on the following 6 variables.

blue percentage of blue
brown percentage of brown
green percentage of green
orange percentage of orange
red percentage of red
yellow percentage of yellow

Source

This data is attributed to an email sent by Masterfoods USA, A Mars, Incorporated Company. This email was archived at the Math Forum, <http://www.mathforum.org> (now off-line).

Examples

```
data(mandms)
bagfull = c(15, 34, 7, 19, 29, 24)
names(bagfull) = c("blue", "brown", "green", "orange", "red", "yellow")
prop = function(x) x/sum(x)
chisq.test(bagfull, p = prop(mandms["milk chocolate", ]))
chisq.test(bagfull, p = prop(mandms["Peanut", ]))
```

math	<i>Standardized math scores</i>
------	---------------------------------

Description

Standardized math scores

Usage

```
data(math)
```

Format

The format is: num [1:30] 44 49 62 45 51 59 57 55 70 64 ...

Source

From Larry Kitchens, *Exploring Statistics*, Duxbury Press.

Examples

```
data(math)
hist(math)
```

maydow

Dow Jones industrial average and May maximum temperature

Description

A data set of both the Dow Jones industrial average and the maximum daily temperature in New York City for May 2003.

Usage

```
data(maydow)
```

Format

A data frame with 21 observations on the following 3 variables.

Day Day of the month

DJA The daily close of the DJIQ

max.temp Daily maximum temperature in Central Park

Details

Are stock traders influenced by the weather? This dataset looks briefly at this question by comparing the daily close of the Dow Jones industrial average with the maximum daily temperature for the month of May 2003. This month was rainy and unseasonably cool weather wise, yet the DJIA did well.

Source

The DJIA data was taken from <https://finance.yahoo.com> the temperature data from <https://www.noaa.gov>.

Examples

```
data(maydow)
attach(maydow)
plot(max.temp,DJA)
plot(max.temp[-1],diff(DJA))
```

Medicare*Sample from "Medicare Provider Charge Data"*

Description

Sample from "Medicare Provider Charge Data"

Usage

```
data(Medicare)
```

Format

A data frame with 10000 observations and data for on billings for procedures at many different hospitals.

Source

<http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/index.html>

References

This data came from <http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/index> and was referenced in the article <https://www.nytimes.com/2013/05/08/billing-varies-wildly-us-data-shows.html> (link no longer active), as retrieved on 5/8/2013.

Examples

```
data(Medicare)
```

midsize*Price of new and used of three mid-sized cars*

Description

New and used prices of three popular mid-sized cars.

Usage

```
data(midsize)
```

Format

A data frame with 15 observations on the following 4 variables.

Year 2004 is new car price, others are for used car

Accord Honda Accord

Camry Toyota Camry

Taurus Ford Taurus

Details

The value of a car depreciates over time. This data gives the price of a new car and values of similar models for previous years as reported by <https://www.edmunds.com>.

Examples

```
data(midsize)
plot(Accord ~ I(2004-Year), data = midsize)
```

MLBattend

Major league baseball attendance data

Description

Data on home-game attendance in Major League Baseball for the years 1969-2000.

Usage

```
data(MLBattend)
```

Format

A data frame with 838 observations on the following 10 variables.

franchise Which team

league American or National league

division Which division

year The year (the year 2000 is recorded as 0)

attendance Actual attendance

runs.scored Runs scored by the team during year

runs.allowed Runs allowed by the team during year

wins Number of wins for season

losses Number of losses for season

games.behind A measure of how far from division winner the team was. Higher numbers are worse.

Source

This data was submitted to *The Journal of Statistical Education* by James J. Cochran, jse.amstat.org/v10n2/datasets.cochran.h

Examples

```
data(MLBattend)
boxplot(attendance ~ franchise, MLBattend)
with(MLBattend, cor(attendance,wins))
```

movies

Data frome on top 25 movies for some week, many weeks ago

Description

Data on 25 top movies

Usage

```
data(movies)
```

Format

A data frame with 26 observations on the following 5 variables.

```
title Titles
current Current week
previous Previous weel
gross Total
```

Source

Some movie website, sorry lost the url.

Examples

```
data(movies)
boxplot(movies$previous)
```

movie_data_2011	<i>Movie data for 2011 by weekend</i>
-----------------	---------------------------------------

Description

Movie data for 2011 by weekend

Usage

```
data(movie_data_2011)
```

Format

A data frame with variables Previous (previous weekend rank), Movie (title), Distributor, Genre, Gross (per current weekend), Change (change from previous week), Theaters (number of theaters), TotalGross (total gross to date), Days (days out), weekend (weekend of report)

Source

Scraped from (now defunct) pages such as www.the-numbers.com/box-office-chart/weekend/2011/04/29.

Examples

```
data(movie_data_2011)
```

mw.ages	<i>Age distribution in year 2000 in Maplewood New Jersey</i>
---------	--

Description

Age distribution in Maplewood New Jersey, a suburb of New York City. Data is broken down by Male and Female.

Usage

```
data(mw.ages)
```

Format

A data frame with 103 observations on the following 2 variables.

Male Counts per age group. Most groups are 1 year, except for 100-104, 105-110, 110+.

Female Same

Source

US Census 2000 data from (factfinder.census.gov) (invalid link now)

Examples

```
data(mw.ages)
barplot(mw.ages$Male + mw.ages$Female)
```

nba.draft

NBA draft lottery odds for 2002

Description

The NBA draft in 2002 has a lottery

Usage

```
data(nba.draft)
```

Format

A data frame with 13 observations on the following 2 variables.

Team Team name

Record The team won-loss record

Balls The number of balls (of 1000) that this team has in the lottery selection

Details

The NBA draft has a lottery to determine the top 13 placings. The odds in the lottery are determined by the won-loss record of the team, with poorer records having better odds of winning.

Source

Data is taken from www.nba.com/news/draft_ties_020424.html.

Examples

```
data(nba.draft)
top.pick = sample(row.names(nba.draft), 1, prob = nba.draft$Balls)
```

nisdc***NISCD***

Description

A data frame measuring daily sea-ice extent from 1978 until 2013.

Usage

```
data(nisdc)
```

Format

A data frame measuring daily sea-ice extent from 1978 until 2013

Source

ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/NH_seaice_extent_final.csv
 and ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/NH_seaice_extent_nrt.csv
 (now offline).

References

See the blog post <https://www.r-bloggers.com/2012/08/arctic-sea-ice-at-lowest-levels-since-observations> for a description and nice script to play with.

normtemp***Body temperature and heart rate of 130 health individuals***

Description

A data set used to investigate the claim that “normal” temperature is 98.6 degrees.

Usage

```
data(normtemp)
```

Format

A data frame with 130 observations on the following 3 variables.

temperature normal body temperature

gender Gender 1 = male, 2 = female

hr Resting heart rate

Details

Is normal body temperature 98.6 degrees Fahrenheit? This dataset was constructed to match data presented in an article intending to establish the true value of “normal” body temperature.

Source

This data set was contributed by Allen L. Shoemaker to the *Journal of Statistics Education*, <https://jse.amstat.org/datasets/normtemp.txt>.

References

Data set is simulated from values contained in Mackowiak, P. A., Wasserman, S. S., and Levine, M. M. (1992), "A Critical Appraisal of 98.6 Degrees F, the Upper Limit of the Normal Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich," *Journal of the American Medical Association*, 268, 1578-1580.

Examples

```
data(normtemp)
hist(normtemp$temperature)
t.test(normtemp$temperature, mu=98.2)
summary(lm(temperature ~ factor(gender), normtemp))
```

npdb

National Practitioner Data Bank

Description

Selected variables from the publicly available data from the National Practitioner Data Bank (NPDB).

Usage

```
data(npdb)
```

Format

A data frame with 6797 observations on the following 6 variables.

state 2 digit abbreviation of state

field Field of practice

age Age of practitioner (rounded down to 10s digit)

year Year of claim

amount Dollar amount of reward

ID a practitioner ID, masked for anonymity

The variable names do not match the original. The codings for **field** come from a document on <http://63.240.212.200/publicdata.html>.

Details

This dataset excerpts some interesting variables from the NPDB for the years 2000-2003. The question of capping medical malpractice awards to lower insurance costs is currently being debated nationwide (U.S.). This data is a primary source for determining this debate.

A quotation from <https://www.npdb-hipdb.com/>:

“The legislation that led to the creation of the NPDB was enacted the U.S. Congress believed that the increasing occurrence of medical malpractice litigation and the need to improve the quality of medical care had become nationwide problems that warranted greater efforts than any individual State could undertake. The intent is to improve the quality of health care by encouraging State licensing boards, hospitals and other health care entities, and professional societies to identify and discipline those who engage in unprofessional behavior; and to restrict the ability of incompetent physicians, dentists, and other health care practitioners to move from State to State without disclosure or discovery of previous medical malpractice payment and adverse action history. Adverse actions can involve licensure, clinical privileges, professional society membership, and exclusions from Medicare and Medicaid.”

Source

This data came from <https://www.npdb-hipdb.com/>

Examples

```
data(npdb)
table(table(npdb$ID)) # big offenders
hist(log(npdb$amount)) # log normal?
```

nym.2002

Random sample of 2002 New York City Marathon finishers

Description

A random sample of finishers from the New York City Marathon.

Usage

```
data(nym.2002)
```

Format

A data frame with 1000 observations on the following 5 variables.

place Place in the race

gender What gender

age Age on day of race

home Indicator of hometown or nation

time Time in minutes to finish

Details

Each year thousands of participants line up to run the New York City Marathon. This list is a random sample from the finishers.

Source

From the New York City Road Runners web site <http://www.nyrc.org>

Examples

```
data(nym.2002)
with(nym.2002, cor(time,age))
```

ObamaApproval

Approval ratings for President Obama

Description

A collection of approval ratings for President Obama spanning a duration from early 2010 to the summer of 2013.

Usage

```
data(ObamaApproval)
```

Format

A data frame 7 variables.

Source

Scraped on 7-5-13 from https://www.realclearpolitics.com/epolls/other/president_obama_job_approval-1044.html.

Examples

```
data(ObamaApproval)
```

OBP	<i>On base percentage for 2002 major league baseball season</i>
-----	---

Description

The on base percentage, OBP, is a measure of how often a players gets on base. It differs from the more familiar batting average, as it include bases on balls (BB) and hit by pitches (HBP). The exact formula is $OBP = (H + BB + HBP) / (AB + BB + HBP + SF)$.

Usage

```
data(OBP)
```

Format

438 numbers between 0 and 1 corresponding the on base “percentage” for the 438 players who had 100 or more at bats in the 2002 baseball season. The “outlier” is Barry Bonds.

Source

This data came from the interesting Lahman baseball data base <http://www.seanlahman.com/>. The names attribute uses the playerID from this database. Unfortunately there were some errors in the extraction from the original data set. Consult the original for accurate numbers.

Examples

```
data(OBP)
hist(OBP)
OBP[OBP>.5] # who is better than 50%? (only Barry Bonds)
```

oral.lesion	<i>Oral lesion location by town</i>
-------------	-------------------------------------

Description

A data set on oral lesion location for three Indian towns.

Usage

```
data(oral.lesion)
```

Format

A data frame with 9 observations on the following 3 variables.

Kerala a numeric vector

Gujarat a numeric vector

Andhra a numeric vector

Source

"Exact Inference for Categorical Data", by Cyrus R. Mehta and Nitin R. Patel. Found at <http://www.cytel.com/papers/sxpaper.pdf>.

Examples

```
data(oral.lesion)
chisq.test(oral.lesion)$p.value
chisq.test(oral.lesion,simulate.p.value=TRUE)$p.value ## exact is .0269
```

ozonemonthly

Monthly mean ozone values at Halley Bay Antarctica

Description

A time series showing ozone values at Halley Bay Antarctica

Usage

```
data(ozonemonthly)
```

Format

The format is: Time-Series [1:590] from 1957 to 2006: 313 311 370 359 334 296 288 274 NA NA ... - attr(*, "names")= chr [1:590] "V5" "V6" "V7" "V8" ...

Details

Provisional monthly mean ozone values for Halley Bay Antarctica between 1956 and 2005. Data comes from <https://legacy.bas.ac.uk/met/jds/ozone/>.

Source

Found at <https://legacy.bas.ac.uk/met/jds/ozone/data/ZNOZ.DAT>, now off-line.

References

This page meteohistory.org/2004proceedings1.1/pdfs/11christie.pdf held a discussion of data collection and the Ozone hole.

Examples

```
data(ozonemonthly)
## notice decay in the 80s
plot(ozonemonthly)
## October plot shows dramatic swing
monthplot(ozonemonthly)
```

paradise

*Annual snowfall at Paradise Ranger Station, Mount Ranier***Description**

Annual snowfall (from July 1 to June 30th) measured at Paradise ranger station at Mount Ranier Washington.

Usage

```
data(paradise)
```

Format

The data is stored as a zoo class object. The time index refers to the year the snowfall begins.

Details

Due to its rapid elevation gain, and proximity to the warm moist air of the Pacific Northwest record amounts of snow can fall on Mount Ranier. This data set shows the fluctuations.

Source

Original data from <http://www.nps.gov/mora/current/weather.htm>

Examples

```
require(zoo)
data(paradise)
range(paradise, na.rm=TRUE)
plot(paradise)
```

pi2000

*first 2000 digits of pi***Description**

first 2000 digits of pi

Usage

```
data(pi2000)
```

Format

The format is: num [1:2000] 3 1 4 1 5 9 2 6 5 3 ...

Source

Generated by *Mathematica*, <https://www.wolfram.com>.

Examples

```
data(pi2000)
chisq.test(table(pi2000))
```

primes	<i>Primes numbers less than 2003</i>
--------	--------------------------------------

Description

Prime numbers between 1 and 2003.

Usage

```
data(primes)
```

Format

The format is: num [1:304] 2 3 5 7 11 13 17 19 23 29 ...

Source

Generated using <http://www.rsok.com/~jrm/printprimes.html>.

Examples

```
data(primes)
diff(primes)
```

puerto	<i>Incomes for Puerto Rican immigrants to Miami</i>
--------	---

Description

Incomes for Puerto Rican immigrants to Miami

Usage

```
data(puerto)
```

Format

The format is: num [1:50] 150 280 175 190 305 380 290 300 170 315 ...

Source

From Kitchens Exploring Statistics

Examples

```
data(puerto)
hist(puerto)
```

QQplot	<i>Creates a qqplot with shaded density estimate</i>
--------	--

Description

Creates a qqplot of two variables along with graphs of their densities, shaded so that the corresponding percentiles are clearly matched up.

Usage

```
QQplot(x, y, n = 20, xsf = 4, ysf = 4, main = "qqplot", xlab = deparse(substitute(x)),
       ylab = deparse(substitute(y)), pch = 16, pcol = "black", shade = "gray", ...)
```

Arguments

x	The x variable
y	The y variable
n	number of points to plot in qqplot.
xsf	scale factor to adjust size of x density graph
ysf	scale factor to adjust size of y density graph
main	title
xlab	label for x axis
ylab	label for y axis
pch	plot character for points in qqplot
pcol	color of plot character
shade	shading color
...	extra arguments passed to plot.window

Details

Shows density estimates for the two samples in a qqplot. Meant to make this useful plot more transparent to first-time users of quantile-quantile plots.

This function has some limitations: the scale factor may need to be adjusted; the code to shade only shaded trapezoids, and does not completely follow the density.

Value

Produces a graphic

Author(s)

John Verzani

See Also

[qqplot](#), [qqnorm](#)

Examples

```
x = rnorm(100)
y = rt(100, df=3)
QQplot(x,y)
```

rat

Survival times of 20 rats exposed to radiation

Description

Survival times of 20 rats exposed to radiation

Usage

```
data(rat)
```

Format

The format is: num [1:20] 152 152 115 109 137 88 94 77 160 165 ...

Source

From Kitchens Exploring Statistics

Examples

```
data(rat)
hist(rat)
```

reaction.time	<i>Reaction time with cell phone usage</i>
---------------	--

Description

A simulated dataset on reaction time to an external event for subject using cell phones.

Usage

```
data(reaction.time)
```

Format

A data frame with 60 observations on the following 4 variables.

age Age of participant coded as 16-24 or 25+

gender Male or Female

control Code to indicate if subject is using a cell phone "T" or is in the control group "C"

time Time in seconds to react to external event

Details

Several studies indicate that cell phone usage while driving can effect reaction times to external events. This dataset uses simulated data based on values from the NHTSA study "The Influence of the Use of Mobile Phones on Driver Situation Awareness".

Source

The NHTSA study was found at <http://www-nrd.nhtsa.dot.gov/departments/nrd-13/Driver-Distraction/PDF/2.PDF>

References

This study and others were linked from the web page <http://www.accidentreconstruction.com/research/cellphones/> (now off-line).

Examples

```
data(reaction.time)
boxplot(time ~ control, data = reaction.time)
```

reddrum*Growth of red drum*

Description

Simulated length-at-age data for the red drum.

Usage

```
data(redrum)
```

Format

A data frame with 100 observations on the following 2 variables.

age age

length a numeric vector

Details

This data is simulated from values reported in a paper by Porch, Wilson and Nieland titled "A new growth model for red drum (*Sciaenops ocellatus*) that accommodates seasonal and ontogenetic changes in growth rates" which appear in *Fishery Bulletin* 100(1) (was at <http://fishbull.noaa.gov/1001/por.pdf>, now off-line). They attribute the data to Beckman et. al and say it comes from measurements in the Northern Gulf of Mexico, between September 1985 and October 1998.

Examples

```
data(redrum)
plot(length ~ age, redrum)
```

salmon.rate*Simulated Data on Rate of Recruitment for Salmon*

Description

The Ricker model is used to model the relationship of recruitment of a salmon species versus the number of spawners. The model has two parameters, a rate of growth at small numbers and a decay rate at large numbers. This data set is simulated data for 83 different recordings using parameters found in a paper by Chen and Holtby.

Usage

```
data(salmon.rate)
```

Format

The format is: 83 numbers on decay rates.

Details

The Ricker model for recruitment modeled by spawner count

$$R_t = S_t e^{a - bS_t}$$

The parameter b is a decay rate for large values of S . In the paper by Chen and Holtby, they studied 83 datasets and found that b is log-normally distributed. The data is simulated from their values to illustrate a log normal distribution.

Source

These values are from D.G. Chen and L. Blair Holtby, “A regional meta-model for stock recruitment analysis using an empirical Bayesian approach”, found at <https://www.iphc.int/>.

Examples

```
data(salmon.rate)
hist(log(salmon.rate))
```

salmonharvest

Salmon harvest in Alaska from 1980 to 1998

Description

A data set of unofficial tallies of salmon harvested in Alaska between the years 1980 and 1998. The units are in thousands of fish.

Usage

```
data(salmonharvest)
```

Format

A multiple time series object with yearly sampling for the five species Chinook, Sockeye, Coho, Pink, and Chum.

Source

This data was found at http://seamarkets.alaska.edu/ak_harv_fish.htm

Examples

```
data(salmonharvest)
acf(salmonharvest)
```

Description

A data frame containing data on health behaviour for school-aged children.

Usage

```
data(samhda)
```

Format

A data frame with 600 observations on the following 9 variables.

wt A numeric weight used in sampling

gender 1=Male, 2=Female, 7=not recorded

grade 1 = 6th, 2 = 8th, 3 = 10th

live.with.father 1 = Y, 2 = N

amt.smoke Amount of days you smoked cigarettes in last 30. 1 = all 30, 2= 20-29, 3 = 10-19, 4 = 6-9, 5= 3-5, 6 = 1-2, 7=0

alcohol Have you ever drank alcohol, 1 = Y, 2 = N

amt.alcohol Number of days in last 30 in which you drank alcohol

marijuana Ever smoke marijuana. 1 = Y, 2= N

amt.marijuana Number of days in 1st 30 that marijuana was used. 1 = Never used, 2 = all 30, 3 = 20-29, 4 = 10-19, 5 = 6-9, 6 = 3-5, 7 = 1-2, 8 =Used, but not in last 30 days

Details

A data frame containing data on health behaviour for school-aged children.

Source

This data is sampled from the data set "Health Behavior in School-Aged Children, 1996: [United States]" collected by the World Health Organization, <https://www.icpsr.umich.edu/>. It is available at the Substance Abuse and Mental Health Data Archive (SAMHDA). Only complete cases are given.

Examples

```
data(samhda)
attach(samhda)
table(amt.smoke)
```

SAT

SAT data with expenditures

Description

This dataset contains variables that address the relationship between public school expenditures and academic performance, as measured by the SAT.

Usage

```
data(SAT)
```

Format

A data frame with variables `state`, `expend` (expenditure per pupil), `ratio` (pupil/teacher ratio); `salary` (average teacher salary; percentage of SAT takers; `verbal` (verbal score); `math` (math score); `total` (average total).

Source

The data came from <http://www.amstat.org/publications/jse/datasets/sat.txt>

References

This data comes from <http://www.amstat.org/publications/jse/secure/v7n2/datasets.guber.cfm>. It is also included in the **mosaic** package and commented on at <http://sas-and-r.blogspot.com/2012/02/example-920-visualizing-simpsons.html>. The variables are described at <http://www.amstat.org/publications/jse/datasets/sat.txt>.

The author references the original source: The variables in this dataset, all aggregated to the state level, were extracted from the 1997 *Digest of Education Statistics*, an annual publication of the U.S. Department of Education. Data from a number of different tables were downloaded from the National Center for Education Statistics (NCES) website (Available at: <http://nces01.ed.gov/pubs/digest97/index.html>) and merged into a single data file.

Examples

```
data(SAT)
```

scatter.with.hist *Scatterplot with histograms*

Description

Draws a scatterplot of the data, and histogram in the margins. A trend line can be added, if desired.

Usage

```
scatter.with.hist(x, y,
  hist.col = gray(0.95),
  trend.line = "lm",
  ...)
```

Arguments

x	numeric predictor
y	numeric response variables
hist.col	color for histogram
trend.line	Draw a trend line using lm , supsmu or lowess . Use NULL for none.
...	Passed to plot command for scatterplot

Value

Draws the graphic. No return value.

Author(s)

John Verzani

References

This example comes from the help page for [layout](#).

See Also

[layout](#)

Examples

```
data(emissions)
attach(emissions)
scatter.with.hist(perCapita, CO2)
```

scrabble*Distribution of Scrabble pieces*

Description

Distribution and point values of letters in Scrabble.

Usage

```
data(scrabble)
```

Format

A data frame with 27 observations on the following 3 variables.

piece Which piece

points point value

frequency Number of pieces

Details

Scrabble is a popular board game based on forming words from the players' pieces. These consist of letters drawn from a pile at random. The game has a certain frequency of letters given by this data. These match fairly well with the letter distribution of the English language.

Examples

```
data(scrabble)
## perform chi-squared analysis on long string. Is it in English?
quote = " R is a language and environment for statistical computing \
and graphics. It is a GNU project which is similar to the S language \
and environment which was developed at Bell Laboratories (formerly \
AT&T, now Lucent Technologies) by John Chambers and colleagues. R \
can be considered as a different implementation of S. There are \
some important differences, but much code written for S runs \
unaltered under R."
quote.lc = tolower(quote)
quote = unlist(strsplit(quote.lc,""))
ltr.dist = sapply(c(letters," "),function(x) sum(quote == x))
chisq.test(ltr.dist,,scrabble$freq)
```

simple.chutes	<i>simulate a chutes and ladder game</i>
---------------	--

Description

This function will simulate a chutes and ladder game. It returns a trajectory for a single player. Optionally it can return the transition matrix which can be used to speed up the simulation.

Usage

```
simple.chutes(sim=FALSE, return.cl=FALSE, cl=make.cl())
```

Arguments

sim	Set to TRUE to return a trajectory.
return.cl	Set to TRUE to return a transition matrix
cl	set to the chutes and ladders transition matrix

Details

To make a chutes and ladders trajectory

```
simple.chutes(sim=TRUE)
```

To return the game board

```
simple.chutes(return.cl=TRUE)
```

when doing a lot of simulations, it may be best to pass in the game board

```
cl <- simple.chutes(return.cl=TRUE) simple.chutes(sim=TRUE,cl)
```

Value

returns a trajectory as a vector, or a matrix if asked to return the transition matrix

Author(s)

John Verzani

References

board was from <http://www.ahs.uwaterloo.ca/~musuem/vexhibit/Whitehill/snakes/snakes.gif>

Examples

```
plot(simple.chutes(sim=TRUE))
```

simple.densityplot *Plots densities of data*

Description

Allows one to compare empirical densities of different distributions in a simple manner. The density is used as graphs with multiple histograms are too crowded. The usage is similar to side-by-side boxplots.

Usage

`simple.densityplot(x, ...)`

Arguments

- x x may be a sequence of data vectors (eg. x,y,z), a data frame with numeric column vectors or a model formula
- ... You can pass in a bandwidth argument such as bw="SJ". See density for details. A legend will be placed for you automatically. To override the positioning set do.legend="manual". To skip the legend, set do.legend=FALSE.

Value

Makes a plot

Author(s)

John Verzani

References

Basically a modified boxplot function. As well it should be as it serves the same utility: comparing distributions.

See Also

[boxplot](#), [simple.violinplot](#), [density](#)

Examples

```
## taken from boxplot
## using a formula
data(InsectSprays)
simple.densityplot(count ~ spray, data = InsectSprays)
## on a matrix (data frame)
mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),
             T5 = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
simple.densityplot(data.frame(mat))
```

simple.eda*Simple function to plot histogram, boxplot and normal plot*

Description

Simply plots histogram, boxplot and normal plot for experimental data analysis.

Usage

```
simple.eda(x)
```

Arguments

x	a vector of data
---	------------------

Value

Just does the plots. No return value

Author(s)

John Verzani

References

Inspired by S-Plus documentation

See Also

hist,boxplot,qnorm

Examples

```
x<- rnorm(100,5,10)
simple.eda(x)
```

simple.eda.ts	<i>Makes 3 useful graphs for eda of times series</i>
---------------	--

Description

This makes 3 graphs to check for serial correlation in data. The graphs are a sequential plot (i vs X_i), a lag plot (plotting X_i vs X_i where k=1 by default) and an autocorrelation plot from the times series ("ts") package.

Usage

```
simple.eda.ts(x, lag=1)
```

Arguments

x	a univariate vector of data
lag	a lag to give to the lag plot

Value

Makes the graph with 1 row, 3 columns

Author(s)

John Verzani

References

Downloaded from <http://www.itl.nist.gov/div898/handbook/eda/section3/eda34.htm>.

Examples

```
## The function is currently defined as

## look for no correlation
x <- rnorm(100);simple.eda.ts(x)
## you will find correlation here
simple.eda.ts(cumsum(x))
```

simple.fancy.stripchart

Makes a fancier strip chart: plots means and a line

Description

Not much, just hides some ugly code

Usage

```
simple.fancy.stripchart(l)
```

Arguments

l A list with each element to be plotted with a stripchart

Value

Creates the plot

Author(s)

John Verzani

See Also

stripchart

Examples

```
x = rnorm(10);y=rnorm(10,1)
simple.fancy.stripchart(list(x=x,y=y))
```

simple.freqpoly

Simply plot histogram and frequency polygon

Description

Simply plot histogram and frequency polygon. Students do not need to know how to add lines to a histogram, and how to extract values.

Usage

```
simple.freqpoly(x, ...)
```

Arguments

- x a vector of data
- ... arguments passed onto histogram

Value

returns just the plot

Author(s)

John Verzani

See Also

hist,density

Examples

```
x <- rt(100,4)
simple.freqpoly(x)
```

simple.hist.and.boxplot

A function to plot both a histogram and a boxplot

Description

Simple function to plot both histogram and boxplot to compare

Usage

```
simple.hist.and.boxplot(x, ...)
```

Arguments

- x vector of univariate data
- ... Arguments passed to the hist function

Value

Just prints the two graphs

Author(s)

John Verzani

See Also

hist,boxplot,layout

Examples

```
x<-rnorm(100)
simple.hist.and.boxplot(x)
```

simple.lag

applies function to moving subsets of a data vector

Description

Used to apply a function to subsets of a data vector. In particular, it is used to find moving averages over a certain "lag" period.

Usage

```
simple.lag(x, lag, FUN = mean)
```

Arguments

x	a data vector
lag	the lag amount to use.
FUN	a function to apply to the lagged data. Defaults to mean

Details

The function FUN is applied to the data $x[(i-lag):i]$ and assigned to the $(i-lag)$ th component of the return vector. Useful for finding moving averages.

Value

returns a vector.

Author(s)

Provided to R help list by Martyn Plummer

See Also

filter

Examples

```
## find a moving average of the dow daily High
data(dowdata)
lag = 50; n = length(dowdata$High)
plot(simple.lag(dowdata$High,lag),type="l")
lines(dowdata$High[lag:n])
```

simple.lm

Simplify usage of lm

Description

Simplify usage of lm by avoiding model notation, drawing plot, drawing regression line, drawing confidence intervals.

Usage

```
simple.lm(x, y, show.residuals=FALSE, show.ci=FALSE, conf.level=0.95, pred=)
```

Arguments

- x The predictor variable
- y The response variable
- show.residuals set to TRUE to plot residuals
- show.ci set to TRUE to plot confidence intervals
- conf.level if show.ci=TRUE will plot these CI's at this level
- pred values of the x-variable for prediction

Value

returns plots and an instance of lm, as though it were called `lm(y ~ x)`

Author(s)

John Verzani

See Also

lm

Examples

```
## on simulated data
x<-1:10
y<-5*x + rnorm(10,0,1)
tmp<-simple.lm(x,y)
summary(tmp)

## predict values
simple.lm(x,y,pred=c(5,6,7))
```

simple.median.test *Do simple sign test for median – no ranks*

Description

Do simple sign test like wilcox.test without ranking. Just computes two-sided p-value, no confidence interval is given.

Usage

```
simple.median.test(x, median=NA)
```

Arguments

x	A data vector
median	The value of median under the null hypothesis

Details

Unlike wilcox.test, this tests the null hypothesis that the median is specified against the two-sided alternative. For illustration purposes only.

Value

Returns the p value.

Author(s)

John Verzani

See Also

wilcox.test

Examples

```
x<-c(12,2,17,25,52,8,1,12)
simple.median.test(x,20)
```

simple.scatterplot *Simple scatter plot of x versus y with histograms of each*

Description

Shows scatterplot of x vs y with histograms of each on sides of graph. As in the example from layout.

Usage

```
simple.scatterplot(x, y, ...)
```

Arguments

x	data vector
y	data vector
...	passed to plot command

Value

Returns the plot

Author(s)

John Verzani

See Also

layout

Examples

```
x<-sort(rnorm(100))
y<-sort(rt(100,3))
simple.scatterplot(x,y)
```

simple.sim*Simplify the process of simulation*

Description

'simple.sim' is intended to make it a little easier to do simulations with R. Instead of writing a for loop, or dealing with column or row sums, a student can use this "simpler" interface.

Usage

```
simple.sim(no.samples, f, ...)
```

Arguments

no.samples	How many samples do you wish to generate
f	A function which generates a single random number from some distributions. simple.sim generates the rest.
...	parameters passed to f. It does not like named parameters.

Details

This is simply a wrapper for a for loop that uses the function f to create random numbers from some distribution.

Value

returns a vector of size no.samples

Note

There must be a 1000 better ways to do this. See [replicate](#) or [sapply](#) for example.

Author(s)

John Verzani

Examples

```
## First shows trivial (and very unnecessary usage)
## define a function f and then simulate
f<-function() rnorm(1)      # create a single random real number
sim <- simple.sim(100,f)    # create 100 random normal numbers
hist(sim)

## what does range look like?
f<- function (n, mu=0, sigma=1) {
  tmp <- rnorm(n, mu, sigma)
  max(tmp) - min(tmp)
```

```

}
sim <- simple.sim(100,f,5)
hist(sim)

```

<code>simple.violinplot</code>	<i>Plots violinplots instead of boxplots</i>
--------------------------------	--

Description

This function serves the same utility as side-by-side boxplots, only it provides more detail about the different distribution. It plots violinplots instead of boxplots. That is, instead of a box, it uses the density function to plot the density. For skewed distributions, the results look like "violins". Hence the name.

Usage

```
simple.violinplot(x, ...)
```

Arguments

<code>x</code>	Either a sequence of variable names, or a data frame, or a model formula
<code>...</code>	You can pass arguments to polygon with this. Notably, you can set the color to red with <code>col='red'</code> , and a border color with <code>border='blue'</code>

Value

Returns a plot.

Author(s)

John Verzani

References

This is really the boxplot function from R/base with some minor adjustments

See Also

`boxplot`, `simple.densityplot`

Examples

```

## make a "violin"
x <- rnorm(100) ;x[101:150] <- rnorm(50,5)
simple.violinplot(x,col="brown")
f<-factor(rep(1:5,30))
## make a quintet. Note also choice of bandwidth
simple.violinplot(x~f,col="brown",bw="SJ")

```

simple.z.test

Implement basic z-test for illustrative purposes

Description

Implements a z-test similar to the t.test function

Usage

```
simple.z.test(x, sigma, conf.level=0.95)
```

Arguments

x	A data vector
sigma	the known variance
conf.level	Confidence level for confidence interval

Value

Returns a confidence interval for the mean

Author(s)

Joh Verzani

See Also

t.test, prop.test

Examples

```
x<-rnorm(10,0,5)
simple.z.test(x,5)
```

skateranks*Judges scores for disputed ice skating competition*

Description

Judges scores from the disputed ice skating competition at the 2002 Winter olympics

Usage

```
data(skateranks)
```

Format

A data frame with 20 observations on the following 11 variables.

Name a factor with levels Berankova/DiabolaBerezhnaya/Sikharulidze Bestnadigova/Bestandif
 Chuvaeva/Palamarchuk Cobisi/DePra Ina/Zimmerman Kautz/Jeschke Krasitseva/Znachkov
 Langlois/Archetto Lariviere/Faustino Pang/Tong Petrova/Tikhonov Ponomareva/SWviridov
 Savchenko/Morozov Scott/Dulebohn Sele/Pelletier Shen/Zhao Totmianina/Marinin
 Zagorska/Siudek Zhang/Zhang

Country a factor with levels Armenia Canada China Czech Germany Italy Poland Russia Slovakia
 US Ukraine Uzbekistan

Russia a numeric vector

China a numeric vector

US a numeric vector

France a numeric vector

Poland a numeric vector

Canada a numeric vector

Ukraine a numeric vector

Germany a numeric vector

Japan a numeric vector

Examples

```
data(skateranks)
```

slc

Sodium-Lithium countertransport

Description

Sodium-Lithium countertransport

Usage

```
data(slcc)
```

Format

The format is: num [1:190] 0.467 0.430 0.192 0.192 0.293 ...

Source

From Kitchens' Exploring Statistics

Examples

```
data(slcc)
hist(slcc)
```

smokyph

Water pH levels at 75 water samples in the Great Smoky Mountains

Description

Water pH levels at 75 water samples in the Great Smoky Mountains

Usage

```
data(smokyph)
```

Format

This data frame contains the following columns:

waterph a numeric vector

elev a numeric vector

code a numeric vector

Source

From Kitchens' Exploring Statistics

Examples

```
data(smokyph)
plot(smokyph$elev, smokyph$waterph)
```

snacks

*Snack data from the USDA***Description**

subset of SR26 data on nutrients compiled by the USDA.

Usage

```
data(snacks)
```

Format

A data frame with some nutrition variables

Source

This data came from the SR26 data set found at www.ars.usda.gov/Services/docs.htm?docid=8964 (link no longer found).

Examples

```
data(snacks)
```

south

*Murder rates for 30 Southern US cities***Description**

Murder rates for 30 Southern US cities

Usage

```
data(south)
```

Format

The format is: num [1:30] 12 10 10 13 12 12 14 7 16 18 ...

Source

From Kitchens' Exploring Statistics

Examples

```
data(south)
hist(south)
```

southernosc

Southern Oscillations

Description

The southern oscillation is defined as the barometric pressure difference between Tahiti and the Darwin Islands at sea level. The southern oscillation is a predictor of el nino which in turn is thought to be a driver of world-wide weather. Specifically, repeated southern oscillation values less than -1 typically defines an el nino.

Usage

```
data(southernosc)
```

Format

The format is: Time-Series [1:456] from 1952 to 1990: -0.7 1.3 0.1 -0.9 0.8 1.6 1.7 1.4 1.4 1.5 ...

Source

Originally downloaded from <http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm>

References

A description was available at <http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4461.htm>

Examples

```
data(southernosc)
plot(southernosc)
```

sp500.excess	<i>Excess returns of S&P 500</i>
--------------	--------------------------------------

Description

Excess returns of S&P 500. These are defined as the difference between the series and some riskless asset.

Usage

```
data(sp500.excess)
```

Format

The format is: Time-Series [1:792] from 1929 to 1995: 0.0225 -0.044 -0.0591 0.0227 0.0077 0.0432 0.0455 0.0171 0.0229 -0.0313 ...

Source

This data set is used in Tsay, Analysis of Financial Time Series. At the time, it was downloaded from www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts (now off-line). The fSeries package may also contain this data set.

Examples

```
data(sp500.excess)
plot(sp500.excess)
```

Split.zoo	<i>Add split method for zoo objects</i>
-----------	---

Description

Splits zoo objects by a grouping variable ala `split()`. Each univariate series is turned into a multivariate zoo object. If the original series is multivariate, the output is a list of multivariate zoo objects.

Usage

```
Split.zoo(x, f)
```

Arguments

x	an univariate or multivariate zoo object
f	A grouping variable of the same length of x. A warning is given if <code>length(f)</code> is not the same as index size of x

Value

Returns a multivariate zoo object, or list of such.

Author(s)

John Verzani

See Also

[split](#)

Examples

```
if(require(zoo)) {  
  split.zoo = Split.zoo ## make generic  
  x = zoo(1:30,1:30)  
  f = sample(letters[1:5],30, replace=TRUE)  
  split(x,f)  
}
```

squareplot

Create a squareplot alternative to a segmented barplot

Description

Create a squareplot as an alternative to a segmented barplot. Useful when the viewer is interested in exact counts in the categories. A squareplot is often used by the *New York Times*. A grid of squares is presented with each color representing a different category. The colors appear contiguously reading top to bottom, left to right. The colors segment the graph as a segmented bargraph, but the squares allow an interested reader to easily tally the counts.

Usage

```
squareplot(x, col = gray(seq(0.5, 1, length = length(x))),  
border =NULL, nrows = ceiling(sqrt(sum(x))), ncols =  
ceiling(sum(x)/nrows),  
...)
```

Arguments

x	a vector of counts
col	a vector of colors
border	border color passed to polygon
nrows	number of rows
ncols	number of columns
...	passed to title

Value

Creates the graph, but has no return value.

Author(s)

John Verzani

References

The *New York Times*, <https://www.nytimes.com>. In particular, Sports page 6, June 15, 2003.

Examples

```
## A Roger Clemens Cy Young year -- roids?
squareplot(c(21,7,6),col=c("blue","green","white"))
```

stud.recs

Student records

Description

A simulation of student records used for placement purposes

Usage

```
data(stud.recs)
```

Format

A data frame with 160 observations on the following 6 variables.

seq.1 Score on sequential 1 test
seq.2 Score on sequential 2 test
seq.3 Score on sequential 3 test
sat.v SAT verbal score
sat.m SAT math score
num.grade grade on first math class
letter.grade grade on first math class

Details

Some simulated student records for placement purposes

Examples

```
data(stud.recs)
hist(stud.recs$sat.v)
with(stud.recs,cor(sat.v,sat.m))
```

student.expenses *Some simulated data on student expenses*

Description

Some data for possible student expenses

Usage

```
data(student.expenses)
```

Format

A data frame of 5 variables for 10 students. All answers are coded "Y" for yes, "N" for no.

cell.phone Does student have cell phone.

cable.tv Does student have cable TV.

dial.up Does student pay for dial-up internet access.

cable.modem Does student pay for high-speed or cable modem access to internet.

car Does student own a car.

Details

Sample dataset of students expenses.

Examples

```
data(student.expenses)
attach(student.expenses)
table(dial.up, cable.modem)
```

superbarplot *super segmented barplot*

Description

Plot a barplot, with bars nested and ranging from a max to a minimum value. A similar graphic is used on the weather page of the *New York Times*.

Usage

```
superbarplot(x, names = 1:dim(x)[2], names_height = NULL,
             col = gray(seq(0.8, 0.5, length = dim(x)[1]/2)), ...
            )
```

Arguments

- x A matrix with each pair of rows representing a min and max for the bar.
- names Place a name in each bar.
- names_height Where the names should go
- col What colors to use for the bars. There should be half as many specified as rows of x
- ... passed to [plot.window](#).

Details

A similar graphic on the weather page of the *New York Times* shows bars for record highs and lows, normal highs and lows and actual (or predicted) highs or lows for 10 days of weather. This graphic succinctly and elegantly displays a wealth of information. Intended as an illustration of the [polygon](#) function.

Value

Returns a plot, but no other values.

Author(s)

John Verzani

References

The weather page of the *New York Times*

See Also

[squareplot](#)

Examples

```
record.high=c(95,95,93,96,98,96,97,96,95,97)
record.low= c(49,47,48,51,49,48,52,51,49,52)
normal.high=c(78,78,78,79,79,79,79,80,80,80)
normal.low= c(62,62,62,63,63,63,64,64,64,64)
actual.high=c(80,78,80,68,83,83,73,75,77,81)
actual.low =c(62,65,66,58,69,63,59,58,59,60)
x=rbind(record.low,record.high,normal.low,normal.high,actual.low,actual.high)
the.names=c("S","M","T","W","T","F","S")[c(3:7,1:5)]
superbarplot(x,names=the.names)
```

tastesgreat	<i>Does new goo taste great?</i>
-------------	----------------------------------

Description

Fictitious data on taste test for new *goo*

Usage

```
data(tastesgreat)
```

Format

A data frame with 40 observations on the following 3 variables.

gender a factor with levels Female Male

age a numeric vector

enjoyed 1 if enjoyed, 0 otherwise

Details

Fictitious data on a taste test with gender and age as covariates.

Examples

```
data(tastesgreat)
summary(glm(enjoyed ~ gender + age, data=tastesgreat, family=binomial))
```

tcm1y	<i>One-year treasury security values</i>
-------	--

Description

The yields at constant fixed maturity have been constructed by the Treasury Department, based on the most actively traded marketable treasury securities.

Usage

```
data(tcm1y)
```

Format

The format is: Time-Series [1:558] from 1953 to 2000: 2.36 2.48 2.45 2.38 2.28 2.2 1.79 1.67 1.66 1.41 ...

Source

From the tcm data set in the tseries package. Given here for convenience only. They reference <https://www.federalreserve.gov/Releases/H15/data.htm> (not active anymore).

Examples

```
data(tcm1y)
ar(diff(log(tcm1y)))
```

tempsalinity

Temperature/Salinity measurements along a moving Eddy

Description

Simulated measurements of temperature and salinity in the center of 'Eddy Juggernaut', a huge anti-cyclone (clockwise rotating) Loop Current Ring in the Gulf of Mexico. The start date is October 18, 1999.

Usage

```
data(tempsalinity)
```

Format

The data is stored as multivariate zooreg object with variables longitude, latitude, temperature (Celsius), and salinity (psu - practical salinity units, originally from https://toptotop.org/2014/10/21/climate_solutio/).

Details

The temperature salinity profile of body of water can be characteristic. This data shows a change in the profile in time as the eddy accumulates new water.

Source

Data from simulation by Andrew Poje.

Examples

```
data(tempsalinity)
if(require(zoo)) {
  plot(tempsalinity[,3:4])
  ## overide plot.zoo method
  plot.default(tempsalinity[,3:4])
  abline(lm(salinity ~ temperature, tempsalinity, subset = 1:67))
  abline(lm(salinity ~ temperature, tempsalinity, subset = -(1:67)))
}
```

too.young

What age is too young for a male to date a female?

Description

In U.S. culture, an older man dating a younger woman is not uncommon, but when the age difference becomes too great it may seem to some to be unacceptable. This data set is a survey of 10 people with their minimum age for an acceptable partner for a range of ages for the male. A surprising rule of thumb (in the sense that someone took the time to figure this out) for the minimum is half the age plus seven. Does this rule hold for this data set?

Usage

```
data(too.young)
```

Format

A data frame with 80 observations on the following 2 variables.

Male a numeric vector

Female a numeric vector

Examples

```
data(too.young)
lm(Female ~ Male, data=too.young)
```

twins

Burt's IQ data for twins

Description

IQ data of Burt on identical twins that were separated near birth.

Usage

```
data(twins)
```

Format

A data frame with 27 observations on the following 3 variables.

Foster IQ for twin raised with foster parents

Biological IQ for twin raised with biological parents

Social Social status of biological parents

Source

This data comes from the R package that accompanies Julian Faraway's notes *Practical Regression and Anova in R* (now a book).

Examples

```
data(twins)
plot(Foster ~ Biological, twins)
```

u2

Song and lengths for U2 albums

Description

Song titles and lengths of U2 albums from 1980 to 1997.

Usage

```
data(u2)
```

Format

The data is stored as a list with names. Each list entry correspond to an album stored as a vector. The values of the vector are the song lengths in seconds and the names are the track titles.

Source

Original data retrieved from <http://www.u2station.com/u2ography.html>

Examples

```
data(u2)
sapply(u2,mean) # average track length
max(sapply(u2,max)) # longest track length
sort(unlist(u2)) # lengths in sorted order
```

urchin.growth	<i>Data on growth of sea urchins</i>
---------------	--------------------------------------

Description

Data on growth of sea urchins.

Usage

```
data(urchin.growth)
```

Format

A data frame with 250 observations on the following 2 variables.

age Estimated age of sea urchin

size Measurement of size

Details

Data is sampled from a data set that accompanies the thesis of P. Grosjean.

Source

Thesis was found at http://www.sciviews.org/_pgrosjean

Examples

```
data(urchin.growth)
plot(jitter(size) ~ jitter(age), data=urchin.growth)
```

vacation	<i>vacation days</i>
----------	----------------------

Description

vacation days

Usage

```
data(vacation)
```

Format

The format is: num [1:35] 23 12 10 34 25 16 27 18 28 13 ...

Source

From Kitchens' Exploring Statistics

Examples

```
data(vacation)
hist(vacation)
```

violinplot

Plots violinplots instead of boxplots

Description

This function serves the same utility as side-by-side boxplots, only it provides more detail about the different distribution. It plots violinplots instead of boxplots. That is, instead of a box, it uses the density function to plot the density. For skewed distributions, the results look like "violins". Hence the name.

Usage

```
violinplot(x, ...)
```

Arguments

x	Either a sequence of variable names, or a data frame, or a model formula
...	You can pass arguments to polygon with this. Notably, you can set the color to red with col='red', and a border color with border='blue'

Value

Returns a plot.

Author(s)

John Verzani

References

This is really the boxplot function from R/base with some minor adjustments

See Also

boxplot, densityplot

Examples

```
## make a "violin"
x <- rnorm(100) ;x[101:150] <- rnorm(50,5)
violinplot(x,col="brown")
f<-factor(rep(1:5,30))
## make a quintet. Note also choice of bandwidth
violinplot(x~f,col="brown",bw="SJ")
```

watertemp

Temperature measurement of water at 85m depth

Description

Water temperature measurements at 10 minute intervals at a site off the East coast of the United States in the summer of 1974.

Usage

```
data(watertemp)
```

Format

A zoo class object with index stored as POSIXct elements. The measurements are in Celsius.

Source

NODC Coastal Ocean Time Series Database Search Page which was at <http://www.nodc.noaa.gov/dsdt/tsdb/search.html>

Examples

```
if(require(zoo)) {
  data(watertemp)
  plot(watertemp)
  acf(watertemp)
  acf(diff(watertemp))
}
```

wchomes

*A random sample of Wake County, North Carolina residential real estate plots***Description**

This data set comes from a JSE article <https://jse.amstat.org/v20n3/woodard.pdf> by Roger Woodard. The data is described by: The information for this data set was taken from a Wake County, North Carolina real estate database. Wake County is home to the capital of North Carolina, Raleigh, and to Cary. These cities are the fifteenth and eighth fastest growing cities in the USA respectively, helping Wake County become the ninth fastest growing county in the country. Wake County boasts a 31.18 of approximately 823,345 residents. This data includes 100 randomly selected residential properties in the Wake County registry denoted by their real estate ID number. For each selected property, 11 variables are recorded. These variables include year built, square feet, adjusted land value, address, et al.

Usage

```
data(wchomes)
```

Format

a data frame

Source

<https://www.amstat.org/publications/jse/v16n3/woodard.xls> (now off-line)

References

<https://jse.amstat.org/v20n3/woodard.pdf>

Examples

```
data(wchomes)
```

wellbeing

*What makes us happy?***Description**

Correlated data on what makes us happy

Usage

```
data(wellbeing)
```

Format

A data frame with data about what makes people happy (well being) along with several other covariates

Source

Found from <https://app.peterrcook.com/whatmakesushappy/>.

References

<https://app.peterrcook.com/whatmakesushappy/> and <https://www.nationalaccountsofwellbeing.org/>

Examples

```
data(wellbeing)
```

yahoo.get.hist.quote *Download stock data from Yahoo!*

Description

Downloads stock data from Yahoo!

Usage

```
yahoo.get.hist.quote(instrument = "^gspc",
destfile = paste(instrument, ".csv", sep = ""),
start, end, quote = c("Open", "High", "Low", "Close"),
adjusted = TRUE, download = TRUE,
origin = "1970-01-01", compression = "d")
```

Arguments

instrument	Ticker symbol as character string.
destfile	Temporary file for storage
start	Date to start. Specified as "2005-12-31"
end	Date to end
quote	Any/All of "Open", "High", "Low", "Close"
adjusted	Adjust for stock splits, dividends. Defaults to TRUE
download	Download the data
origin	Dates are recorded in the number of days since the origin. A value of "1970-01-01" is the default. This was changed from "1899-12-30".
compression	Passed to yahoo

Details

Goes to chart.yahoo.com and downloads the stock data. By default returns a multiple time series of class mts with missing days padded by NAs.

Value

A multiple time series with time measureing the number of days since the value specified to origin.

Author(s)

Daniel Herlemont <dherlemont@yats.com>

References

This function was found on the mailling list for R-SIG finance

See Also

`yahoo.get.hist.quote` in the `tseries` package

yellowfin

Yellow fin tuna catch rate in Tropical Indian Ocean

Description

Mean catch rate of yellow fin tuna in Tropical Indian Ocean for the given years.

Usage

`data(yellowfin)`

Format

A data frame with 49 observations on the following 2 variables.

year The year

count Mean number of fish per 100 hooks cast

Details

Estimates for the mean number of fish caught per 100 hooks are given for a number of years. This can be used to give an estimate for the size, or biomass, of the species during these years assuming the more abundant the fish, the larger the mean. In practice this assumption is viewed with a wide range of attitudes.

Source

This data is read from a graph that accompanies Myers RA, Worm B (2003) “Rapid worldwide depletion of predatory fish communities”. *Nature* 423:280-283.

References

See also http://www.soest.hawaii.edu/PFRP/large_pelagic_predators.html for rebuttals to the Myers and Worm article.

Examples

```
data(yellowfin)
plot(yellowfin)
```

Index

* **aplot**
 simple.hist.and.boxplot, 94

* **datagen**
 simple.sim, 99

* **datasets**
 age.universe, 5
 aid, 6
 alaska.pipeline, 6
 alltime.movies, 7
 aosat, 8
 arctic.oscillations, 9
 babies, 10
 babyboom, 11
 batting, 12
 baycheck, 13
 best.times, 14
 blood, 15
 breakdown, 16
 bright.stars, 16
 brightness, 17
 bumpers, 18
 BushApproval, 18
 bycatch, 19
 cabinet, 20
 camp, 21
 cancer, 22
 carbon, 23
 carsafety, 23
 central.park, 24
 central.park.cloud, 25
 ceo2013, 26
 cfb, 26
 chicken, 27
 chips, 28
 co2emiss, 29
 coins, 29
 coldvermont, 30
 corn, 31
 crime, 32

 deflection, 33
 diamond, 35
 divorce, 36
 dottodot, 37
 dowdata, 38
 dvdsales, 39
 emissions, 39
 ewr, 40
 exec.pay, 41
 fat, 42
 father.son, 43
 female.inc, 44
 firstchi, 45
 five.yr.temperature, 45
 florida, 46
 galileo, 47
 galton, 48
 gap, 49
 gasprices, 49
 goalspergame, 50
 google, 51
 grades, 51
 grip, 52
 hall.fame, 52
 healthy, 54
 heartrate, 55
 home, 56
 homedata, 56
 homeprice, 57
 homework, 58
 HUMMER, 58
 income_percentiles, 59
 iq, 60
 kid.weights, 60
 KSI, 61
 last.tie, 62
 lawsuits, 62
 lorem, 63
 malpract, 64

mandms, 64
math, 65
maydow, 66
Medicare, 67
midsize, 67
MLBattend, 68
movie_data_2011, 70
movies, 69
mw.ages, 70
nba.draft, 71
nisdc, 72
normtemp, 72
npdb, 73
nym.2002, 74
ObamaApproval, 75
OBP, 76
oral.lesion, 76
ozonemonthly, 77
paradise, 78
pi2000, 78
primes, 79
puerto, 79
rat, 81
reaction.time, 82
reddrum, 83
salmon.rate, 83
salmonharvest, 84
samhda, 85
SAT, 86
scrabble, 88
skateranks, 102
slc, 103
smokyph, 103
snacks, 104
south, 104
southernosc, 105
sp500.excess, 106
stud.recs, 108
student.expenses, 109
tastesgreat, 111
tcmly, 111
tempsalinity, 112
too.young, 113
twins, 113
u2, 114
urchin.growth, 115
vacation, 115
watertemp, 117
wchomes, 118
wellbeing, 118
yellowfin, 120
* **dynamic**
 demos, 33
* **hplot**
 DOTplot, 36
 scatter.with.hist, 87
 simple.eda, 91
 simple.fancy.stripchart, 93
 simple.freqpoly, 93
 simple.scatterplot, 98
 squareplot, 107
 superbarplot, 109
* **htest**
 simple.median.test, 97
* **misc**
 QQplot, 80
 Split.zoo, 106
 yahoo.get.hist.quote, 119
* **multivariate**
 DensityPlot, 34
 scatter.with.hist, 87
 simple.densityplot, 90
 simple.violinplot, 100
 superbarplot, 109
 violinplot, 116
* **regression**
 simple.lm, 96
* **ts**
 simple.lag, 95
* **univar**
 simple.chutes, 89
 simple.eda, 91
 simple.eda.ts, 92
 simple.freqpoly, 93
 simple.hist.and.boxplot, 94
 simple.lag, 95
 simple.sim, 99
 simple.z.test, 101
 squareplot, 107
* **utilities**
 answers, 8
 confint.htest, 31
 headtail, 54
 age.universe, 5
 aid, 6
 alaska.pipeline, 6

alltime.movies, 7
 answers, 8
 aosat, 8
 arctic.oscillations, 9
 babies, 10
 babyboom, 11
 batting, 12
 baycheck, 13
 best.times, 14
 blood, 15
 boxplot, 34, 90
 breakdown, 16
 bright.stars, 16
 brightness, 17
 bumpers, 18
 BushApproval, 18
 bycatch, 19
 cabinet, 20
 camp, 21
 cancer, 22
 carbon, 23
 carsafety, 23
 central.park, 24
 central.park.cloud, 25
 ceo2013, 26
 cfb, 26
 chicken, 27
 chips, 28
 co2emiss, 29
 coins, 29
 coldvermont, 30
 confint.htest, 31
 corn, 31
 crime, 32
 deflection, 33
 demos, 33
 density, 34, 90
 DensityPlot, 34
 diamond, 35
 divorce, 36
 dnstyplt (simple.densityplot), 90
 DOTplot, 36
 dotplot, 37
 DOTplt (DOTplot), 36
 dottodot, 37
 dowdata, 38
 dvdsales, 39
 emissions, 39
 errata, 40
 ewr, 40
 exec.pay, 41
 fat, 42
 father.son, 43, 48
 female.inc, 44
 firstchi, 45
 five.yr.temperature, 45
 florida, 46
 galileo, 47
 galton, 48
 gap, 49
 gasprices, 49
 getAnswer, 50
 goalspergame, 50
 google, 51
 grades, 51
 grip, 52
 hall.fame, 52
 headtail, 54
 healthy, 54
 heartrate, 55
 home, 56
 homedata, 56
 homeprice, 57
 homework, 58
 HUMMER, 58
 income_percentiles, 59
 iq, 60
 kid.weights, 60
 KSI, 61
 last.tie, 62
 lawsuits, 62
 layout, 87
 lm, 87
 lorem, 63
 lowess, 87
 malpract, 64
 mandms, 64
 math, 65

maydow, 66
Medicare, 67
midsize, 67
MLBattend, 68
movie_data_2011, 70
movies, 69
mw.ages, 70
nba.draft, 71
nisdc, 72
normtemp, 72
npdb, 73
nym.2002, 74
ObamaApproval, 75
OBP, 76
oral.lesion, 76
ozonemonthly, 77
paradise, 78
pi2000, 78
plot, 87
plot.window, 110
points, 37
polygon, 107, 110
primes, 79
puerto, 79
qqnorm, 81
QQplot, 80
qqplot, 81
rat, 81
reaction.time, 82
reddrum, 83
replicate, 99
salmon.rate, 83
salmonharvest, 84
samhda, 85
sapply, 99
SAT, 86
scatter.with.hist, 87
scrabble, 88
simple.chutes, 89
simple.densityplot, 90
simple.eda, 91
simple.eda.ts, 92
simple.fancy.stripchart, 93
simple.freqpoly, 93
simple.hist.and.boxplot, 94
simple.lag, 95
simple.lm, 96
simple.median.test, 97
simple.plot.hist.and.box
 (simple.hist.and.boxplot), 94
simple.scatterplot, 98
simple.sim, 99
simple.violinplot, 90, 100
simple.z.test, 101
skateranks, 102
slc, 103
smokyph, 103
snacks, 104
south, 104
southernosc, 105
sp500.excess, 106
split, 107
Split.zoo, 106
squareplot, 107, 110
stripchart, 37
stud.recs, 108
student.expenses, 109
superbarplot, 109
supsmu, 87
tastesgreat, 111
tcm1y, 111
tempsalinity, 112
text, 37
too.young, 113
twins, 113
u2, 114
urchin.growth, 115
vacation, 115
violinplot, 34, 116
vlnplt(simple.violinplot), 100
watertemp, 117
wchomes, 118
wellbeing, 118
yahoo.get.hist.quote, 119
yellowfin, 120