
Package ‘conformalInference.multi’
September 15, 2025

Type Package
Version 1.1.2

Encoding UTF-8

Title Conformal Inference Tools for Regression with Multivariate
Response

Description It computes full conformal, split conformal and multi-split conformal
prediction regions when the response variable is multivariate (i.e.
dimension is greater than one). Moreover, the package also contains
plot functions to visualize the output of the full and split conformal
functions. To guarantee consistency, the package structure mimics the
univariate package 'conformalInference' by Ryan Tibshirani.
See Lei, G’sell, Rinaldo, Tibshirani, & Wasser-
man (2018) <doi:10.1080/01621459.2017.1307116>
for full and split conformal prediction in regression, and Barber, Candès,
Ramdas, & Tibshirani (2023) <doi:10.1214/23-
AOS2276> for extensions beyond exchangeability.

URL https://github.com/ryantibs/conformal

License GPL-2 | file LICENSE

Depends R (>= 4.1.0)

Imports future (>= 1.23.0), future.apply (>= 1.8.1), ggplot2 (>=
3.3.5), glmnet, gridExtra (>= 2.3), stats, utils

Suggests mvtnorm

RoxygenNote 7.3.2
NeedsCompilation no

Author Jacopo Diquigiovanni [aut, ths],
Matteo Fontana [aut, ths],
Aldo Solari [aut, ths],
Simone Vantini [aut, ths],
Paolo Vergottini [aut, cre],
Ryan Tibshirani [ctb]

Maintainer Paolo Vergottini <paolo.vergottini@gmail.com>

Repository CRAN
Date/Publication 2025-09-15 21:20:10 UTC

1

https://doi.org/10.1080/01621459.2017.1307116
https://doi.org/10.1214/23-AOS2276
https://doi.org/10.1214/23-AOS2276
https://github.com/ryantibs/conformal

2 computing_s_regression

Contents
computing_s_regression . 2
conformal.multidim.full . 3
conformal.multidim.msplit . 5
conformal.multidim.split . 7
glmnet.funs . 10
lm_multi . 11
mean_multi . 12
plot_multidim . 13
plot_multidim_full . 14

Index 16

computing_s_regression

Compute modulation function for residuals

Description

Helper function used internally by conformal.multidim.split and conformal.multidim.msplit.

Usage

computing_s_regression(mat_residual, type, alpha, tau)

Arguments

mat_residual A vector of residuals obtained via multivariate modeling.

type A string indicating the type of modulation function. Options are "identity", "st-
dev", or "alpha-max".

alpha The confidence level for the interval.

tau A number between 0 and 1 used for the randomized version of the algorithm.

Value

Local scoring values for the residuals.

References

Diquigiovanni, Fontana, Vantini (2021), "Conformal Prediction Bands for Multivariate Functional
Data"

See Also

conformal.multidim.split, conformal.multidim.msplit

conformal.multidim.full 3

conformal.multidim.full

Full Conformal prediction intervals, Multivariate Response

Description

Compute prediction intervals using full conformal inference with multivariate response

Usage

conformal.multidim.full(
x,
y,
x0,
train.fun,
predict.fun,
alpha = 0.1,
mad.train.fun = NULL,
mad.predict.fun = NULL,
score = c("l2", "mahalanobis", "max", "scaled.max"),
num.grid.pts.dim = 100,
grid.factor = 1.25,
verbose = FALSE

)

Arguments

x Matrix of features, of dimension (say) n x p.

y Matrix of responses, of length (say) n X q.

x0 Matrix of features, each row being a point at which we want to form a prediction
interval, of dimension (say) n0 x p.

train.fun A function to perform model training, i.e., to produce an estimator of E(Y|X),
the conditional expectation of the response variable Y given features X. Its input
arguments should be x: matrix of features, y: vector of responses, and out: the
output produced by a previous call to train.fun, at the same features x. The
function train.fun may (optionally) leverage this returned output for efficiency
purposes. See details below.

predict.fun A function to perform prediction for the (mean of the) responses at new feature
values. Its input arguments should be out: output produced by train.fun, and
newx: feature values at which we want to make predictions.

alpha Miscoverage level for the prediction intervals, i.e., intervals with coverage 1-
alpha are formed. Default for alpha is 0.1.

mad.train.fun A function to perform training on the absolute residuals i.e., to produce an esti-
mator of E(R|X) where R is the absolute residual R = |Y - m(X)|, and m denotes
the estimator produced by train.fun. This is used to scale the conformal score,

4 conformal.multidim.full

to produce a prediction interval with varying local width. The input arguments
to mad.train.fun should be x: matrix of features, y: vector of absolute residuals,
and out: the output produced by a previous call to mad.train.fun, at the same
features x. The function mad.train.fun may (optionally) leverage this returned
output for efficiency purposes. See details below. The default for mad.train.fun
is NULL, which means that no training is done on the absolute residuals, and
the usual (unscaled) conformal score is used. Note that if mad.train.fun is non-
NULL, then so must be mad.predict.fun (next).

mad.predict.fun

A function to perform prediction for the (mean of the) absolute residuals at
new feature values. Its input arguments should be out: output produced by
mad.train.fun, and newx: feature values at which we want to make predictions.
The default for mad.predict.fun is NULL, which means that no local scaling is
done for the conformal score, i.e., the usual (unscaled) conformal score is used.

score Method to compute nonconformity measure in the multivariate regime. The user
can choose between squared l^2 norm of the residual, mahalanobis depth of the
residual, the max norm of the residual, or a scaled max

num.grid.pts.dim

Number of grid points per dimension used when forming the conformal intervals
(each num.grid.pts.dim^q points is a trial point). Default is 100.

grid.factor Expansion factor used to define the grid for the conformal intervals, i.e., the grid
points are taken to be equally spaced in between -grid.factor*max(abs(y)) and
grid.factor*max(abs(y)). Default is 1.25. In this case (and with exchangeable
data, thus unity weights) the restriction of the trial values to this range costs at
most 1/(n+1) in coverage. See details below.

verbose Should intermediate progress be printed out? Default is FALSE.

Details

Due to eventual computational overload the function is restricted to a bivariate y.

This function is based on the package future.apply to perform parallelization.

If the data (training and test) are assumed to be exchangeable, the basic assumption underlying con-
formal prediction, then the probability that a new response value will lie outside of (-max(abs(y)),
max(abs(y))), where y is the vector of training responses, is 1/(n+1). Thus the restriction of the
trials values to (-grid.factor*max(abs(y)), grid.factor*max(abs(y))), for all choices grid.factor >=
1, will lead to a loss in coverage of at most 1/(n+1). This was also noted in "Trimmed Conformal
Prediction for High-Dimensional Models" by Chen, Wang, Ha, Barber (2016) (who use this basic
fact as motivation for proposing more refined trimming methods).

Value

A list with the following components: pred, valid_points. The first is a matrix of dimension n0 x
q, while the second is a list of length n0, containing in each position a matrix of varying number
of rows (depending on which points where accepted by the method) and with a number of columns
equal to q + 1. Indeed, valid_points contains the selected points on the y-grid as well as the p-values.

conformal.multidim.msplit 5

See Also

conformal.multidim.split

Examples

n = 4
n0 = 2
p = 2
mu = rep(0,p)
x = mvtnorm::rmvnorm(n, mu)
my_grid <- seq(from=0,to=1,length.out=2)
y = t(apply(x,1,function(u) u[1] + u[2]*cos(6*pi*my_grid)))
x0 = mvtnorm::rmvnorm(n0, mu)
fun=mean_multi()
#fun=lm_multi()

#################################### FULL CONFORMAL

final.full=conformal.multidim.full(x, y, x0, fun$train.fun,
fun$predict.fun, score="l2",
num.grid.pts.dim=5, grid.factor=1.25,
verbose=FALSE)

ppp<-plot_multidim_full(final.full)

conformal.multidim.msplit

Multi Split conformal prediction intervals with Multivariate Response

Description

Compute prediction intervals using Multi Split conformal inference for a multivariate response.

Usage

conformal.multidim.msplit(
x,
y,
x0,
train.fun,
predict.fun,
alpha = 0.1,
split = NULL,
seed = FALSE,
randomized = FALSE,
seed_beta = FALSE,
verbose = FALSE,

6 conformal.multidim.msplit

training_size = NULL,
score = "max",
s_type = "st-dev",
B = 100,
lambda = 0,
tau = 1 - (B + 1)/(2 * B)

)

Arguments

x Feature matrix of dimension n x p.

y Response matrix of dimension n x q.

x0 New points to evaluate, matrix of dimension n0 x p.

train.fun Function to perform model training, producing an estimator of E(Y|X). Input
arguments: x (features), y (responses).

predict.fun Function to predict responses at new feature values. Input arguments: out (out-
put from train.fun), newx (new features).

alpha Miscoverage level for prediction intervals. Default 0.1.

split Indices defining the training split. Default NULL (random split).

seed Integer seed for random split. Ignored if split is provided. Default FALSE.

randomized Logical, whether to use the randomized approach. Default FALSE.

seed_beta Seed for the randomized version. Default FALSE.

verbose Logical, print progress? Default FALSE.

training_size Proportion of data used for training. Default 0.5.

score Nonconformity measure to use for the split conformal function.

s_type Type of modulation function: "identity", "st-dev", or "alpha-max". Default "st-
dev".

B Number of repetitions. Default 100.

lambda Smoothing parameter. Default 0.

tau Smoothing parameter for intersection method:

tau = 1 - 1/B Bonferroni intersection method.
tau = 0 Unadjusted intersection.

Default 1 - (B + 1)/(2 * B).

Details

This function extends the univariate Multi Split conformal approach to the multivariate case. Paral-
lelization is performed via the future_sapply function.

Value

A list with components x0, lo, and up. lo and up are matrices of dimension n0 x q.

conformal.multidim.split 7

References

Solari, Djordjilovic (2021), "Multi Split Conformal Prediction" (baseline for univariate case)

Examples

n = 33
n0 = 2
p = 2
mu = rep(0,p)
x = mvtnorm::rmvnorm(n, mu)
my_grid <- seq(from=0,to=1,length.out=2)
y = t(apply(x,1,function(u) u[1] + u[2]*cos(6*pi*my_grid)))
x0 = mvtnorm::rmvnorm(n0, mu)
fun=mean_multi()
#fun=lm_multi()

B=3

final.multi=conformal.multidim.msplit(x=x,y=y, x0=x0,
fun$train.fun, fun$predict.fun,

alpha=0.1,
split=NULL, seed=FALSE, randomized=FALSE,seed_beta=FALSE,
verbose=FALSE, training_size=NULL,s_type="st-dev",B=B,lambda=0,
score="l2")

conformal.multidim.split

Split conformal prediction intervals with Multivariate Response

Description

Compute prediction intervals using split conformal inference with multivariate response.

Usage

conformal.multidim.split(
x,
y,
x0,
train.fun,
predict.fun,
alpha = 0.1,
split = NULL,
seed = FALSE,
randomized = FALSE,

8 conformal.multidim.split

seed_tau = FALSE,
verbose = FALSE,
training_size = 0.5,
score = "l2",
s_type = "st-dev",
mad.train.fun = NULL,
mad.predict.fun = NULL

)

Arguments

x The feature variables, a matrix n x p.

y The matrix of multivariate responses (dimension n x q)

x0 The new points to evaluate, a matrix of dimension n0 x p.

train.fun A function to perform model training, i.e., to produce an estimator of E(Y|X),
the conditional expectation of the response variable Y given features X. Its input
arguments should be x: matrix of features, and y: matrix of responses.

predict.fun A function to perform prediction for the (mean of the) responses at new feature
values. Its input arguments should be out: output produced by train.fun, and
newx: feature values at which we want to make predictions.

alpha Miscoverage level for the prediction intervals, i.e., intervals with coverage 1-
alpha are formed. Default for alpha is 0.1.

split Indices that define the data-split to be used (i.e., the indices define the first half
of the data-split, on which the model is trained). Default is NULL, in which case
the split is chosen randomly.

seed Integer to be passed to set.seed before defining the random data-split to be used.
Default is FALSE, which effectively sets no seed. If both split and seed are
passed, the former takes priority and the latter is ignored.

randomized Should the randomized approach be used? Default is FALSE.

seed_tau The seed for the randomized version. Default is FALSE.

verbose Should intermediate progress be printed out? Default is FALSE.

training_size Split proportion between training and calibration set. Default is 0.5.

score The non-conformity measure. It can either be "max", "l2", "mahalanobis". The
default is "l2".

s_type The type of modulation function. Currently we have 3 options: "identity","st-
dev","alpha-max". Default is "st-dev"

mad.train.fun A function to perform training on the absolute residuals i.e., to produce an esti-
mator of E(R|X) where R is the absolute residual R = |Y - m(X)|, and m denotes
the estimator produced by train.fun. This is used to scale the conformal score,
to produce a prediction interval with varying local width. The input arguments
to mad.train.fun should be x: matrix of features, y: vector of absolute residuals,
and out: the output produced by a previous call to mad.train.fun, at the same
features x. The function mad.train.fun may (optionally) leverage this returned
output for efficiency purposes. See details below. The default for mad.train.fun

conformal.multidim.split 9

is NULL, which means that no training is done on the absolute residuals, and
the usual (unscaled) conformal score is used. Note that if mad.train.fun is non-
NULL, then so must be mad.predict.fun (next).

mad.predict.fun

A function to perform prediction for the (mean of the) absolute residuals at
new feature values. Its input arguments should be out: output produced by
mad.train.fun, and newx: feature values at which we want to make predictions.
The default for mad.predict.fun is NULL, which means that no local scaling is
done for the conformal score, i.e., the usual (unscaled) conformal score is used.

Details

If the two mad functions are provided they take precedence over the s_type parameter, and they
force a local scoring via the mad function predicted values.

Value

A list with the following components: x0,pred,k_s,s_type,s,alpha,randomized,tau, average_width,lo,up.
In particular pred, lo, up are the matrices of dimension n0 x q, k_s is a scalar, s_type is a string, s is
a vector of length q, alpha is a scalar between 0 and 1, randomized is a logical value, tau is a scalar
between 0 and 1,and average_width is a positive scalar.

References

The s_regression and the "max" score are taken from "Conformal Prediction Bands for Multivariate
Functional Data" by Diquigiovanni, Fontana, Vantini (2021).

See Also

conformal.multidim.full

Examples

sample_size=98

my_grid <- seq(from=0,to=1,length.out=5)
mu <- c(0,0,0)
sigma <- rbind(c(1,0.6,0.6), c(0.6,1,0.6), c(0.6,0.6,1))
mltvnorm3 <- mvtnorm::rmvnorm(sample_size, mu, sigma)
y=t(apply(mltvnorm3,1,function(x) x[1] + x[2]*cos(6*pi*my_grid) + x[3]*sin(6*pi*my_grid)))
x=mltvnorm3 + mvtnorm::rmvt(sample_size, diag(length(mu)))## add noise

n0=10
x0 = mvtnorm::rmvt(n0, diag(length(mu)))

fun=mean_multi()
fun=lm_multi()
fun=elastic.funs()

############################## SPLIT CONFORMAL

10 glmnet.funs

final.point = conformal.multidim.split(x,y[,1:2],x0[1:10,], fun$train.fun, fun$predict.fun,
alpha=0.1,

split=NULL, seed=FALSE, randomized=FALSE,seed_tau=FALSE,
verbose=FALSE, training_size=0.5,score ="l2",s_type="st-dev")

ppp2<-plot_multidim(final.point)

glmnet.funs Elastic net, lasso, ridge regression training and prediction functions.

Description

Construct training and prediction functions for the elastic net, the lasso, or ridge regression, based
on the glmnet package, over a sequence of (given or internally computed) lambda values.

Usage

elastic.funs(
gamma = 0.5,
standardize = TRUE,
intercept = TRUE,
lambda = NULL,
nlambda = 50,
lambda.min.ratio = 1e-04,
cv.rule = c("min", "1se")

)

lasso.funs(
standardize = TRUE,
intercept = TRUE,
lambda = NULL,
nlambda = 50,
lambda.min.ratio = 1e-04,
cv.rule = c("min", "1se")

)

ridge.funs(
standardize = TRUE,
intercept = TRUE,
lambda = NULL,
nlambda = 50,
lambda.min.ratio = 1e-04,
cv.rule = c("min", "1se")

)

lm_multi 11

Arguments

gamma Mixing parameter (between 0 and 1) for the elastic net, where 0 corresponds to
ridge regression, and 1 to the lasso. Default is 0.5.

standardize, intercept
Should the data be standardized, and should an intercept be included? Default
for both is TRUE.

lambda Sequence of lambda values over which training is performed. This must be in
decreasing order, and — this argument should be used with caution! When
used, it is usually best to grab the sequence constructed by one initial call
to glmnet (see examples). Default is NULL, which means that the nlambda,
lambda.min.ratio arguments will define the lambda sequence (see next).

nlambda Number of lambda values over which training is performed. In particular, the
lambda sequence is defined by nlambda log-spaced values between lambda.max
and lambda.min.ratio * lambda.max, where lambda.max is the smallest value of
lambda at which the solution has all zero components, and lambda.min.ratio is
a small fraction (see next). Default is 50.

lambda.min.ratio

Small fraction that gets used in conjunction with nlambda to specify a lambda
sequence (see above). Default is 1e-4.

cv.rule If the cv argument is TRUE, then cv.rule determines which rule should be used
for the predict function, either "min" (the usual rule) or "1se" (the one-standard-
error rule). See the glmnet help files for details. Default is "min".

Details

This function is based on the package glmnet. Notice that Cross Validation to select the best
lambda value is compulsory! The functions lasso.funs and ridge.funs are convenience functions,
they simply call elastic.funs with gamma = 1 and gamma = 0, respectively.

Value

A list with three components: train.fun, predict.fun, active.fun. The third function is designed to
take the output of train.fun, and reports which features are active for each fitted model contained in
this output.

lm_multi Linear Modeling of Multivariate Response

Description

This model can be used with conformal prediction functions. It returns a training function and a
prediction function.

Usage

lm_multi()

12 mean_multi

Details

The training function takes as input:

x Feature matrix of dimension n x p.

y Response matrix of dimension n x q.

The prediction function takes as input:

out Output of a previous call to train.fun.

newx New feature matrix to evaluate, dimension n0 x p.

Value

A list with two components:

train.fun Function to train the model. Fits a separate linear model for each dimension of
the response.

predict.fun Function to make predictions on new data.

See Also

conformal.multidim.split

mean_multi Mean of Multivariate Response

Description

This model can be used with conformal prediction functions. It returns a training function and a
prediction function.

Usage

mean_multi()

Details

The training function takes as input:

x Feature matrix of dimension n x p.

y Response matrix of dimension n x q.

The prediction function takes as input:

out Output of a previous call to train.fun.

newx New feature matrix to evaluate, dimension n0 x p.

plot_multidim 13

Value

A list with two components:

train.fun Function to train the model.

predict.fun Function to make predictions on new data.

See Also

conformal.multidim.split

plot_multidim Plot Confidence Regions obtained with Split Conformal

Description

Generate plots for the confidence regions produced by a split multivariate conformal prediction
function.

Usage

plot_multidim(split, same.scale = FALSE)

Arguments

split Output of a split multivariate conformal prediction function.

same.scale Logical. Should all plots use the same y-axis scale? Default is FALSE.

Details

This function uses the ggplot2 and gridExtra packages for visualization.

Value

A list of ggplot objects, one for each observation (n0 = length(x0)).

Examples

sample_size=98

my_grid <- seq(from=0,to=1,length.out=5)
mu <- c(0,0,0)
sigma <- rbind(c(1,0.6,0.6), c(0.6,1,0.6), c(0.6,0.6,1))
mltvnorm3 <- mvtnorm::rmvnorm(sample_size, mu, sigma)
y=t(apply(mltvnorm3,1,function(x) x[1] + x[2]*cos(6*pi*my_grid) + x[3]*sin(6*pi*my_grid)))
x=mltvnorm3 + mvtnorm::rmvt(sample_size, diag(length(mu)))## add noise

n0=10
x0 = mvtnorm::rmvt(n0, diag(length(mu)))

14 plot_multidim_full

fun=mean_multi()
fun=lm_multi()
fun=elastic.funs()

############################## SPLIT CONFORMAL

final.point = conformal.multidim.split(x,y[,1:2],x0[1:10,], fun$train.fun, fun$predict.fun,
alpha=0.1,

split=NULL, seed=FALSE, randomized=FALSE,seed_tau=FALSE,
verbose=FALSE, training_size=0.5,score ="l2",s_type="st-dev")

ppp2<-plot_multidim(final.point)

plot_multidim_full Plot Confidence Regions obtained from Full Conformal

Description

Plot Confidence Regions obtained from Full Conformal

Usage

plot_multidim_full(full)

Arguments

full It’s the output of the multivariate full conformal prediction function

Details

It exploits the package ggplot2 to better visualize the results.

Value

A list of ggplots (output[[i]] is the i-th observation confidence region).

Examples

n = 4
n0 = 2
p = 2
mu = rep(0,p)
x = mvtnorm::rmvnorm(n, mu)
my_grid <- seq(from=0,to=1,length.out=2)
y = t(apply(x,1,function(u) u[1] + u[2]*cos(6*pi*my_grid)))
x0 = mvtnorm::rmvnorm(n0, mu)
fun=mean_multi()

plot_multidim_full 15

#fun=lm_multi()

#################################### FULL CONFORMAL

final.full=conformal.multidim.full(x, y, x0, fun$train.fun,
fun$predict.fun, score="l2",
num.grid.pts.dim=5, grid.factor=1.25,
verbose=FALSE)

ppp<-plot_multidim_full(final.full)

Index

computing_s_regression, 2
conformal.multidim.full, 3, 9
conformal.multidim.msplit, 2, 5
conformal.multidim.split, 2, 5, 7, 12, 13

elastic.funs (glmnet.funs), 10

future.apply, 4
future_sapply, 6

ggplot2, 13, 14
glmnet, 10, 11
glmnet.funs, 10
gridExtra, 13

lasso.funs (glmnet.funs), 10
lm_multi, 11

mean_multi, 12

plot_multidim, 13
plot_multidim_full, 14

ridge.funs (glmnet.funs), 10

16

	computing_s_regression
	conformal.multidim.full
	conformal.multidim.msplit
	conformal.multidim.split
	glmnet.funs
	lm_multi
	mean_multi
	plot_multidim
	plot_multidim_full
	Index

