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Abstract

Here I use the myintegrate() function of the elliptic package to illustrate three classi-
cal theorems from analysis: Cauchy’s integral theorem, the residue theorem, and Cauchy’s
integral formula.
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1. Introduction

Cauchy’s integral theorem and its corollaries are some of the most
startling and fruitful ideas in the whole of mathematics. They place
powerful constraints on analytical functions; and show that a function’s
local behaviour dictates its global properties. Cauchy’s integral theorem
may be used to prove the residue theorem and Cauchy’s integral formula;
these three theorems form a powerful and cohesive suite of results.

In this short document I use numerical methods to illustrate and high-
light some of their consequences for complex analysis.

1.1. Cauchy’s integral theorem

.

Augustin-Louis Cauchy proved an early version of the integral theorem in 1814; it required
that the function’s derivative was continuous. This assumption was removed in 1900 by
Édouard Goursat at the expense of a more difficult proof; the result is sometimes known
as the Cauchy-Goursat theorem and is now a cornerstone of complex analysis. Formally, in
modern notation, we have:

Cauchy’s integral theorem. If f(z) is holomorphic in a simply connected domain Ω ⊂ C,
then for any closed contour C in Ω,

∫
C

f(z) dz = 0.

To demonstrate this theorem numerically, I will use the integration suite of functions provided
with the elliptic package which perform complex integration of a function along a path speci-
fied either as a sequence of segments [integrate.segments()] or a curve [integrate.contour()].

Let us consider f(z) = exp z, holomorphic over all of C, and evaluate
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Figure 1: A square contour integral on the complex plane

∮
C

f(z) dz

where C is the square 0 −→ 1 −→ 1 + i −→ i −→ 0 (figure 1). Numerically:

> integrate.segments(exp, c(0, 1, 1+1i, 1i), close=TRUE)

[1] 1.110223e-16+0i

Above we see that the result is zero (to within numerical precision), in agreement with the
integral theorem. It is interesting to consider each leg separately. We have

A = e − 1 B = e(ei − 1) C = −ei(e − 1) D = −(ei − 1)

And taking B as an example:

> analytic <- exp(1)*(exp(1i)-1)

> numeric <- integrate.segments(exp, c(1, 1+1i), close=FALSE)

> c(analytic=analytic, numeric=numeric, difference=analytic-numeric)

analytic numeric difference

-1.249588+2.287355i -1.249588+2.287355i 0.000000+0.000000i

showing agreement to within numerical precision.

1.2. The residue theorem

residue theorem. Given U , a simply connected open subset of C, and a finite list of points
a1, . . . , an. Suppose f(z) is holomorphic on U0 = U \ {a1, . . . an} and γ is a closed rectifiable
curve in U0. Then

∮
γ

f(z) dz = 2πi
n∑

k=1

I(γ, ak) · Res(f, ak)

where I(γ, ak) is the winding number of γ about ak and Res(f, ak) is the residue of f at ak.

The canonical, and simplest, application of this is to derive the log function by integrating
f(z) = 1/z along the unit circle, as per figure 2. Here the residue at the origin is 1, so the
integral round the unit circle is, analytically, 2πi. Numerically:
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Figure 2: A circular contour integral on the complex plane

> u <- function(x){exp(pi*2i*x)}

> udash <- function(x){pi*2i * exp(pi*2i*x)}

> analytic <- pi*2i

> numeric <- integrate.contour(function(z){1/z}, u, udash)

> c(analytic=analytic, numeric=numeric, difference=analytic-numeric)

analytic numeric

0.000000e+00+6.283185e+00i -3.561641e-17+6.283185e+00i

difference

3.561641e-17+8.881784e-16i

again we see very close agreement.

1.3. Cauchy’s integral formula

Cauchy’s integral formula. If f(z) is analytic within and on a simple closed curve C
(assumed to be oriented anticlockwise) inside a simply-connected domain, and if z0 is any
point inside C, then

f(z0) =
1

2πi

∫
C

f(z) dz

z − z0

.

We may use this to evaluate the Gauss hypergeometric function at a critical point. The Gauss
hypergeometric function 2F1(a, b; c; z) is defined as

1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)
c(c + 1)

z2

2!
+ · · ·

Now, this series has a radius of convergence of 1 (Abramowitz and Stegun 1965); but the
function is defined over the whole complex plane by analytic continuation (Buhring 1987). The
hypergeo package (Hankin 2015) evaluates 2F1(a, b; c; z) for different values of z by applying
a sequence of transformations to reduce |z| to its minimum value; however, this process is
ineffective for z = 1

2
± i

√
3/2, these points transforming to themselves. Numerically:

> library("hypergeo")

> z0 <- 1/2 + sqrt(3)/2i
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> f <- function(z){hypergeo_powerseries(1/2, 1/3, 1/5, z)}

> f(z0)

[1] NA

Above we see NA, signifying failure to converge. However, the residue theorem may be used
to evaluate 2F1 at this point:

> r <- 0.1 # radius of contour

> u <- function(x){z0 + r*exp(pi * 2i * x)}

> udash <- function(x){r * pi * (0+2i) * exp(pi * 2i * x)}

> (val_residue <- integrate.contour(function(z){f(z) / (z-z0)}, u, udash) / (pi*2i))

[1] 0.7062091-0.8072539i

We can compare this value with that obtained by a more sophisticated [and computationally
expensive] method, that of Gosper (Hankin 2015):

> (val_gosper <- hypergeo_gosper(1/2, 1/3, 1/5, z0))

[1] 0.7062091-0.8072539i

> abs(val_gosper - val_residue)

[1] 1.798219e-14

Above we see reasonable numerical agreement.

2. Conclusions
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