Package ‘Ipl’

August 21, 2025
Type Package

Title Local Partial Likelihood Estimation and Simultaneous Confidence
Band

Version 0.13

Date 2025-08-19

Author Bingshu E. Chen [aut, cre],
Yicong Liu [aut],
Siwei Zhang [aut],
Teng Wen [aut],
Wenyu Jiang [aut]

Maintainer Bingshu E. Chen <bingshu. chen@queensu.ca>
Depends R (>=3.5.0), MASS, methods, parallel, survival

Description Local partial likelihood estima-
tion by Fan, Lin and Zhou(2006)<doi:10.1214/009053605000000796> and simultaneous confi-
dence band is a set of tools to test the covariates-biomarker interaction for sur-
vival data. Test for the covariates-biomarker interaction using the boot-
strap method and the asymptotic method with simultaneous confi-
dence band (Liu, Jiang and Chen (2015)<doi:10.1002/sim.6563>).

License GPL-2

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2025-08-20 23:00:01 UTC

Contents

Ipl-package
control L e e e e e e
coxScoreHess e e e e e
DS . e e e

https://doi.org/10.1214/009053605000000796
https://doi.org/10.1002/sim.6563

2 Ipl-package
Iple . . e e 10
multiRoot 12
numHessian L o oo 13
NUMSCOTE . . o v v vt vttt e e e e e e e e e e e e e 14
plotdple e 15
predict.ple e 16
printlplb . . . oL e 17
printple L L e e e e 18
TINSE . o ot e e e e e e e e e e e e e e e e 19
TSULV . ottt e et e e e e e e e e e 20
survfitdple L 22

Index 24

1pl-package Local Partial Likelihood Boostrap test

Description

This package fits a multivariable local partial likelihood model for covariate-biomarker interaction
with survival data.

Details

"Ipl" is a R package for multivariate covariate-biomarker interaction uisng local partial likelihood
method.

Please use the following steps to install ’Ipl’ package:

1. First, you need to install the ’devtools’ package. You can skip this step if you have ’devtools’
installed in your R. Invoke R and then type

install.packages("devtools")

2. Load the devtools package.

library(devtools)

3. Install "Ipl" package with R commond

install_github("statapps/Ipl")

"Ipl" uses local partial likelihood to etimate covariate-biomarker interactions and bootstrap method
to test the significance of the interactions.

Author(s)

Siwei Zhang and Bingshu E. Chen

Maintainer: Bingshu E. Chen <bingshu.chen@queensu.ca>

control 3

References

1. Fan, J., Lin, H,, Zhou, Y. (2006). Local partial-likelihood estimation for lifetime data. The
Annals of Statistics. 34, 290-325.

2. Liu, Y., Jiang, W. and Chen, B. E. (2015). Testing for treatment-biomarker interaction based on
local partial-likelihood. Statistics in Medicine. 34, 3516-3530.

3. Zhang, S., Jiang, W. and Chen, B. E. (2016). Estimate and test of multivariate covariates and
biomarker interactions for survival data based on local partial likelihood. Manuscript in preparation.

See Also

coxph, survival

Examples

fit = lpl(y~trt+age+tbiomarker)

control Auxiliary function for Ipl fitting

Description

Auxiliary function for 1ple fitting. Typically only used internally by ’Ipl’, but may be used to
construct a control argument to either function.

Usage
1lpl.control(h, kernel = 'gaussian', B, w0, pl1, pctl)

Arguments
h bandwidth of kernel function. The default value is h = 0.2
kernel kernel funtion types, including "gaussian", "epanechnikov", "rectangular”, "tri-
angular”, "biweight", "cosine", "optcosine". The default value is ’gaussian’
B number of bootstrap times. The default value is 200
wo the estimated points in the interval of (0,1), select arbitrarily. The default value
is seq(0.05, 0.95, 0.025)
p1 the number of dependend variables that make interactions with the biomarker w.
The default value is 1
pctl the estimated points that want to be shown in the output. The default value is
seq(0.2,0.8,0.1)
Details

Control is used in model fitting of Ipl.

4 coxScoreHess

Value
This function checks the internal consisitency and returns a list of value as inputed to control model
fit of Ipl.

Author(s)

Siwei Zhang and Bingshu E. Chen

See Also
1plb, 1ple

Examples

The default control values are: h = 0.2, kernel = 'gaussian', B = 200,
wo = seq(0.05, .95, 0.025), pl1 =1, pctl = seq(0.2, 0.8, 0.1)

#H#

To fit the 1lpl model with some control variables changed,

wo=seq(0.05, 0.95, by=0.05)
ctl = 1pl.control(wo=w@, h=0.3, p1=2, B=100)

then fit the 1lple model

coxScoreHess Calculate the Score vector / Hessian matrix for the Cox model

Description

Calculate the Score vector or the Hessian matrix for the Cox proportional hazards model with inputs
of covariates, survival outcomes and the relative risks

Usage
coxScoreHess(X, y, exb, hess = FALSE)
coxpl(X, y, beta, sorted = FALSE)
Arguments
X the covariate matrix from model.matrix, without the interecpt term.
y y is a survival object, y = Surv(time, event).
exb exb is the relative risks with exb = exp(X*beta).
hess output the Hessian matrix, with hess = FALSE as the default, which outputs the
score vector only.
beta the p x 1 regression coefficient to be used in calculation of the partial likelihood.
sorted data were sorted by time from the largest to the smallest, to speed up the algo-

rithm, default is sorted = FALSE, sort by time is recommand when the function
will be called multiple times for the same y.

ibs 5

Details

The survival time shall be sorted from the largest to the smallest, an error will occur if y is not
sorted.

partial likelihood = sum(event(exp(X*beta)/S0))
score = sum(event*(X - S1/50))

Sigma = sum(S1*t(S1))

H = sum(event*(S2/S0 - S1*¥t(S1)/S0))

the robust varaince can be calculated by inv(H)*Sigma*inv(H).

Value

An p by 1 vector of the score of the function calculated at the point relative exp(X*beta). If hess =
TRUE, then a list with the following three components is returned:

score a 1 x p score vector.
Sigma a p x p matrix for the empirical varaince of the score.
H a p x p hessian matrix.

See Also

numHessian numScore multiRoot

ibs The Brier Score and Integrated Brier Score (IBS)

Description

Calculate the Brier score and the integration of the Brier score (IBS) using the Inverse Probability
of Censoring Weighting (IPCW) method.

Usage

brierScore(object, St, tau)
Default S3 method:
ibs(object, ...)

S3 method for class 'coxph'

ibs(object, newdata = NULL, newy = NULL, ...)
S3 method for class 'lple'
ibs(object, newdata = NULL, newy = NULL, ...)

S3 method for class 'Surv'
ibs(object, survProb, ...)

ibs

for ibs.Surv and ibs.default, it is a survival object created by Surv(time, event).
For others, it is a model object returned by coxph, Iple.

optional new data at which the IBS is calculated. If absent, IBS is for the
dataframe used in the original model fit.

optional new survival object data. Default is NULL.
the predicted survival function at time tau to calcuate the Brier score.

the predicted survival function matrix. Row denotes each subject and column
denotes each time points. survProbl[i,j] denotes the predicted survival probabil-
ity of the ith subject at the time t[j].

the time point at which the Brier score is calculated.

additional arguments to be passed to the functions such as ibs.coxph, ibs.Iple,
ibs.Surv etc.

The Brier score is the mean square difference between the true survival status and the predicted
survival function. The Brier score is defined as,

bs(tau) = 1/n*I(T_i>tau, delta_i = 1) S()*2/G(T_i) + (1-S(tau))*2/G(tau),

where G = [IPCW(Surv(time, event)), and IPCW is called to fit a KM model for the censoring time.

The IBS is an integrated Brier Score over time. That is an integrated weighted squared distance
between the estimated survival function and the empirical survival function int_0 * 2 (I(T > t) -
S(t))*2dt. The inverse probability censoring weighting(IPCW) is used to adjust for censoring.

A value of the Brier score or integration of the Brier score is returned.

1. Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather

2. Graf, Erika, Schmoor, Claudia, Sauerbrei, & Willi, et al. (1999). Assessment and comparison of
prognostic classification schemes for survival data. Statistics in Medicine, 18, 2529-2545.

6

Arguments
object
newdata
newy
St
survProb
tau

Details

Value

Author(s)
Bingshu E. Chen

References
Review, 78.

See Also

The IPCW method is used calculate the Brier score and the integrated Brier score. A Cox propor-
tional hazards (PH) model (coxph) shall be fitted to calculate Brier and IBS for the Cox PH model.

The Brier score for the Cox model can also be calculated by brier.

IPCW 7

Examples

set.seed(29)

n =25

time = rexp(n, 1)

event = rbinom(n, 1, 0.75)

calculate the Brier score at time tau

tau = 0.5

St = pexp(rep(tau, n), 1, lower.tail = FALSE)
bs brierScore(Surv(time, event), St, tau)

calculate the integrated Brier score
#fit = coxph(Surv(time, event)~1)
#IBS = ibs(fit)

IPCW Inverse probability of censoring weighting (IPCW)

Description

Create the Inverse Probability of Censoring Weighting (IPCW) using the Kaplan-Meier (KM)
method. print are used to provide a short summary of Iple outputs.

Usage

IPCW(object)
ipcw(time, event)

Arguments
object a survival object created by Surv(time, event).
time the survival time.
event the status indicator, normally O=alive, 1=dead.
Details

survfit is called to fit a KM model for the censoring time.

Value

A vector for the survival function of the censoring time is returned.

Author(s)
Bingshu E. Chen

8 Iplb

See Also
The IPCW function is used in brierScore to calculate the brier score and ibs to calculate the

integrated brier score.

Examples

See example in brier ibs

1plb Local partial likelihood bootstrap (LPLB) method to fit biomarker
Models

Description

{Iplb} is a R package for local partial likelihood estimation (LPLE) (Fan et al., 2006) of the co-
efficients of covariates with interactions of the biomarker W, and hypothesis test of whether the
relationships between covariates and W are significant, by using bootstrap method.

Usage

Default S3 method:
1plb(x, y, control, ...)
S3 method for class 'formula'

lplb(formula, data=list(...), control = list(...), ...)

use

1plb(y ~ X1+X2+...+Xp+w, data=data, control)

#

to fit a model with interactions between biomarker (w) with the first p1l

terms of dependent variables.

pl1 is included in 'control'. pli<p. See 'lplb.control' for details

#

use

1plb(x, y, control)

#

to fit a model without the formula

#

Biomarker w should be the 'LAST' dependend variable

Arguments

formula an object of class "formula"(or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under ’Details’.

data an optional data frame, list or environment (or object coercible by ’as.data.frame’

to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula).

Iplb

X’y

control

Details

For ’Iplb.default’, x is a design matrix of dimension n * (p+1) and y is a vector
of observations of length n for a "Surv" object for "coxph".

a list of parameters for controlling the fitting process. See ’Iplb.control’ for
details

additional arguments to be passed to the low level regression fitting functions
(see below).

Here *w’ is a Biomarker variable. This variable is required and shall be the last dependent variable

in the formula.

’x.cdf’ is a function that maps biomarker values to interval (0, 1) using its empirical cumulative
distribution function.

Value

Iplb returns an object of class inheriting from "lplb" which inherits from the class *coxph’. See later

in this section.

The function "print" (i.e., "print.Iplb") can be used to obtain or print a summary of the results.

An object of class "Iplb" is a list containing at least the following components:

beta_w

01
mTstar

pvalue

Note

a matrix of m * pl, the estimated coefficients at each of the m estimated points,
for the first pl dependent variables with interactions of the biomarker w

the test statistic of the data
a vector of the test statistics from B times’ bootstrap

the p-value of the hypothesis that beta_w is a constant

This package was build on code developed by Yicong Liu for simple treatment-biomaker interaction

model.

Author(s)

Siwei Zhang and Bingshu E. Chen (bingshu.chen@queensu.ca)

References

Zhang, S., Jiang, W. and Chen, B. E. (2016). Estimate and test of multivariate covariates and
biomarker interactions for survival data based on local partial likelihood. Manuscript in preparation.

See Also

coxph, 1pl.control print.1lple plot.1lple

10 Iple

Examples

dat = lplDemoData(50)
fit = lplb(Surv(time, status)~z1 + z2 + w, data = dat, B = 3, pl1 = 2)

print(fit)
lple Local partial likelihood estimate (LPLE) method to fit biomarker Mod-
els
Description

{Iple} is a R package for local partial likelihood estimation (LPLE) (Fan et al., 2006) of the co-
efficients of covariates with interactions of the biomarker W, and hypothesis test of whether the
relationships between covariates and W are significant, by using bootstrap method.

Usage

Default S3 method:

lple(x, y, control, ...)

S3 method for class 'formula’

lple(formula, data=list(...), control = list(...), ...)

use

lple(y ~ X1+X2+...+Xp+w, data=data, control)

#

to fit a model with interactions between biomarker (w) with the first p1

terms of dependent variables.

pl1 is included in 'control'. pli<p. See 'lplb.control' for details

#

use

lple(x, y, control)

#

to fit a model without the formula

#

Biomarker w should be the 'LAST' dependend variable

Arguments

formula an object of class "formula"(or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under ’Details’.

data an optional data frame, list or environment (or object coercible by "as.data.frame’
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula).

Y For ’Iple.default’, x is a design matrix of dimension n * (p+1) and y is a vector

of observations of length n for a "Surv" object for "coxph".

Iple 11
control a list of parameters for controlling the fitting process. See ’Iplb.control’ for
details

additional arguments to be passed to the low level regression fitting functions
(see below).

Details

Here *w’ is a Biomarker variable. This variable is required and shall be the last dependent variable
in the formula.

’x.cdf’ is a function that maps biomarker values to interval (0, 1) using its empirical cumulative
distribution function.

Value

Iple returns an object of class inheriting from "lple" which inherits from the class *coxph’. See later
in this section.

The function "print" (i.e., "print.Iple") can be used to obtain or print a summary of the results.

An object of class "Iple" is a list containing at least the following components:

beta_w a matrix of m * pl, the estimated coefficients at each of the m estimated points,
for the first p1 dependent variables with interactions of the biomarker w

Q1 the test statistic of the data
mTstar a vector of the test statistics from B times’ bootstrap
pvalue the p-value of the hypothesis that beta_w is a constant
Note
This package was build on code developed by Yicong Liu for simple treatment-biomaker interaction
model.
Author(s)

Siwei Zhang and Bingshu E. Chen (bingshu.chen@queensu.ca)

References
Zhang, S., Jiang, W. and Chen, B. E. (2016). Estimate and test of multivariate covariates and
biomarker interactions for survival data based on local partial likelihood. Manuscript in preparation.
See Also

coxph, 1pl.control print.1lple plot.1lple

12 multiRoot

Examples

dat = lplDemoData(50)

fit = lple(Surv(time, status)~zl1 + w, data = dat, p1 = 1)
print(fit)

predict(fit)

survfit(fit, se.fit = FALSE)

multiRoot m-Dimensional Root (Zero) Finding

Description

The function multiRoot searches for root (i.e, zero) of the vector-valued function func with respect
to its first argument using the Gauss-Newton algorithm.

Usage
multiRoot(func, theta, ..., verbose = FALSE, maxIter = 50,
thetaUp = NULL, thetalLow = NULL, tol = .Machine$double.eps”*0.25)

Arguments

func a m-vector function for which the root is sought.

theta the parameter vector first argument to func.

thetalow the lower bound of theta.

thetaUp the upper bound of theta.

verbose print out the verbose, default is FALSE.

maxIter the maximum number of iterations, default is 20.

tol the desired accuracy (convergence tolerance), default is .Machine$double.eps™0.25.

an additional named or unmaned arguments to be passed to func.

Details

The function multiRoot finds an numerical approximation to func(theta) = 0 using Newton method:
theta = theta - solve(J, func(theta)) when m = p. This function can be used to solve the score function
euqations for a maximum log likelihood estimate.

This function make use of numJacobian calculates an numerical approximation to the m by p first
order derivative of a m-vector valued function. The parameter theta is updated by the Gauss-Newton
method:

theta = theta - solve((t(J) x J), J x func(theta))

When m > p, if the nonlinear system has not solution, the method attempts to find a solution in the
non-linear least squares sense (Gauss-Newton algorithm). The sum of square sum(t(U)xU), where
U = func(theta), will be minimized.

numHessian 13

Value

A list with at least four components:

root a vector of theta that solves func(theta) = 0.

f.root a vector of f(root) that evaluates at theta = root.

iter number of iteratins used in the algorithm.

convergence 1 if the algorithm converges, O otherwise.
Author(s)

Bingshu E. Chen (bingshu.chen@queensu.ca)

References
Gauss, Carl Friedrich(1809). Theoria motus corporum coelestium in sectionibus conicis solem
ambientum.
See Also
optim (which is preferred) and nlm, nlminb, numJacobian, numScore, optimize and uniroot for
one-dimension optimization.
Examples
g = function(x, a) (c(x[11+2*x[2]1*3, x[2] - x[31*3, axsin(x[11*x[21)))

theta = c(1, 2, 3)
multiRoot(g, theta, a = -3)

numHessian Calculate Hessian or Information Matrix

Description

Calculate a numerical approximation to the Hessian matrix of a function at a parameter value.

Usage
numHessian(func, theta, h = 0.0001, method=c("fast"”, "easy"), ...)
Arguments
func a function for which the first (vector) argument is used as a parameter vector.
theta the parameter vector first argument to func.
h the step used in the numerical calculation.
method one of "fast" or "easy" indicating the method to use for the approximation.

additional named or unmaned arguments to be passed to func.

14

numScore

Details

The function numHessian calculates an numerical approximation to the p by p second order deriva-
tive of a scalar real valued function with p-vector argument theta. This function can be used to
check if the information matrix of a log likelihood is correct or not.

Value

An p by p matrix of the Hessian of the function calculated at the point theta. If the func is a log
likelihood function, then the negative of the p by p matrix is the information matrix.

See Also

numScore

Examples

g = function(x, a) (x[11+2xx[2]1*3 - x[3]1*3 + axsin(x[11*x[2]))
x0= c(1, 2, 3)

numHessian(g, theta = x0, a = 9)

numHessian(g, theta = x@, method = 'easy', a = 9)

numScore Calculate the Score / Jacobian Function

Description

Calculate a numerical approximation to the Score function of a function at a parameter value.

Usage

numScore(func, theta, h = 0.0001, ...)
numJacobian(func, theta, m, h = 0.0001, ...)

Arguments

func a function for which the first (vector) argument is used as a parameter vector.

theta the parameter vector first argument to func.

h
m

the step used in the numerical calculation.
the dimension of the function f(theta), default is 2.
additional named or unmaned arguments to be passed to func.

Details

The function numScore calculates an numerical approximation to the p by 1 first order derivative of
scalar real valued function with p-vector argument theta. This function can be used to check if the

a

score function of a log likelihood is correct or not.

The function numJacobian calculates an numerical approximation to the m by p first order deriva-
tive of a m-vector real valued function with p-vector argument theta. This function can be used to

find the solution of score functions for a log likelihood using the multiRoot function.

plot.Iple 15

Value

An p by 1 vector of the score of the function calculated at the point theta. If the func is a log
likelihood function, then the p by 1 vector is the score function.

See Also

numHessian multiRoot

Examples

g = function(x, a) (x[11+2xx[2]1*3 - x[3]1*3 + axsin(x[11*x[2]))
x0 = c(1, 2, 3)

numScore(g, x0, a = -3)
plot.1lple The Plot Function of Iple
Description

Draw a series of plots of beta_w vs. w_est for each dependent variable with interactions with the
biomarker w. See also: 1ple, 1pl.control

Usage
S3 method for class 'lple'
plot(x, ..., scale = c('original', 'transformed'))
Arguments
X a Iple class returned from Iple fit.
scale choose the scale of biomarker variable, ’original” or *o’ for the original biomarker

scale. ’transformed’ or ’t’ for transformed scale that mapps biomarker to interval
(0, 1). The default is to plot in the original scale.

other options used in plot().

Details

plot.ple is called to plot the relationships between beta_w and w_est for each dependent variable
with interactions with the biomarker w, from the 1ple fit model.

The number of interaction terms can be set in 1pl.control.

The default method, print.default has its own help page. Use methods("print") to get all the methods
for the print generic.

Value

No return value, called for plot model fit

16 predict.Iple

Author(s)
Bingshu E. Chen and Siwei Zhang

See Also

1plb, 1ple, 1pl.control, print.1lple

Examples

dat = lplDemoData(50)
fit = lple(Surv(time, status)~z1 + w, data = dat, p1 = 1)
plot(fit)

predict.lple predict a Iple object

Description

Compute fitted values and prediction error for a model fitted by Iple

Usage

S3 method for class 'lple'
S3 method for class 'lple'

predict(object, newdata, newy=NULL, ...)
S3 method for class 'lple'
residuals(object, type=c("martingale”, "deviance”), ...)
Arguments
object a model object from the Iple fit
newdata optional new data at which to do predictions. If absent, predictions are for the
dataframe used in the original fit
newy optional new response data. Default is NULL
type type of residuals, the default is a martingale residual

additional arguments affecting the predictions produced

Details

predict.Iple is called to predict object from the Iple model 1ple.

The default method, predict has its own help page. Use methods("predict") to get all the methods
for the predict generic.

print.Iplb 17

Value

predict.Iple returns a list of predicted values, prediction error and residuals.

1p linear predictor of beta(w)*Z, where beta(w) is the fitted regression coefficient
and Z is covariance matrix.

risk risk score, exp(lp). When new y is provided, both Ip and risk will be ordered by
survival time of the new y.

residuals martingale residuals of the prediction, if available.

pe.mres prediction error based on martingale residual, if both new data and new vy is
provided.

cumhaz cumulative hzard function.

time time for cumulative hazard function. Time from new y will be used is provided

Author(s)

Bingshu E. Chen

See Also

The default method for predict predict,

For the Cox model prediction: predict.coxph. #survfit.1lple

print.1lplb print a Iplb object

Description

print are used to provide a short summary of Iplb outputs.

Usage
S3 method for class 'lplb'
print(x, ...)
Arguments
X a Iplb class returned from Iplb fit
other options used in print()
Details

print.Iplb is called to print object or summary of object from the Iplb model 1plb.

The default method, print.default has its own help page. Use methods("print") to get all the methods
for the print generic.

18 print.Iple

Value

No return value, called for printing model fit

Author(s)
Siwei Zhand and Bingshu E. Chen

See Also
The default method for print print.default, 1plb

Examples

#
See examples in 1lplb and lple
#

print.lple print a Iple object

Description

print are used to provide a short summary of Iple outputs.

Usage
S3 method for class 'lple'
print(x, ...)
Arguments
X the results of a Iple fit
other options used in print()
Details

print.Iple is called to print object or summary of object from the Iple model 1ple.

The default method, print.default has its own help page. Use methods("print") to get all the methods
for the print generic.

Value

No return value, called for printing model fit

Author(s)
Siwei Zhand and Bingshu E. Chen

rmst 19

See Also

The default method for print print.default, 1ple

Examples

#
see example in lple
#

rmst The restricted mean survival time (RMST)

Description

Calculate the restricted mean survival time (RMST) for Surv object, Cox proportional model and
other survival objects.

Usage

rmst(object, ...)
rmstFit(tau, h@ = NULL, HQ = function(x){x})
Default S3 method:

rmst(object, ...)
S3 method for class 'coxph'
rmst(object, newdata = NULL, linear.predictors = NULL, tau=NULL, ...)
S3 method for class 'Surv'
rmst(object, tau = NULL, ...)
Arguments
object for rmst.Surv and rmst.default, it is a survival object created by Surv(time,

event). For others, it is a model object returned by coxph, Iple.

ho a hazard function to be used for restricted mean survival time calculation. If
hO(t) is provided, then HO(t) will be ignored.
Ho a cumulative hazard function to be used for restricted mean survival time calcu-

lation. The default is HO(t) =t for t>0

linear.predictors
the linear predictor from the Cox PH model.

newdata optional new data at which the RMST is calculated. If absent, RMST is for the
dataframe used in the original model fit.

tau the time point at which the restricted mean survival time is calculated.

additional arguments to be passed to the functions such as rmst.coxph, rmst.Iple,
rmst.Surv etc.

20 rsurv

Details

The restricted mean survival time (RMST) is the mean of the truncated survival time at some finite
value tau. The RMST is defined as,

RMST(tau) = E(min(T, tau)) = int_0 ~tau S(t)dt,

where S(t) = P(T>t) is the survival function of the random variable T.

rmstFit(tau, hO, HO) calculates the restricted mean survival time based on a hazard (or cumulative
hazard) function. Only one function of either hO(t) or HO(t) is required. If hO(t) is provided, then
HO(t) will be ignored.

Value

A value of the Brier score or integration of the Brier score is returned.

Author(s)
Bingshu E. Chen

See Also

coxph, Surv

Examples

set.seed(29)

n = 25

time = rexp(n, 1)

event = rbinom(n, 1, 0.75)
X = rnorm(n)

y = Surv(time, event)

calculate the restricted mean survival time at tau = 0.5
rms = rmst(y, tau = 0.5)

calculate the integrated brier score
#fit = coxph(y~x)
#RMST = rmst(fit, tau = 2)

rsurv The Survival Distribution

Description

Density, distribution function, quantile function and random variable generation for a survival dis-
tribution with a provided hazard function or cumulative hazard function

rsurv 21

Usage
dsurv(x, h@ = NULL, HO = function(x){x}, log=FALSE)
psurv(q, h® = NULL, H@ = function(x){x}, low.tail=TRUE, log.p=FALSE)
gsurv(p, h@ = NULL, H@ = function(x){x}, low.tail=TRUE)
rsurv(n, h@ = NULL, HO = function(x){x})
rcoxph(n, h@ = NULL, H® = function(x){x}, lp = @)
Arguments
X, q vector of quantiles.
p vector of probabilities.
number of observations.
ho hazard function, default is hO = NULL.
Ho cumulative hazard function, default is HO(x) = x.
1p linear predictor for rcoxph, H(x) = HO(x)exp(Ip).
log, log.p logical; if TRUE, probabilities p are give as log(p).
low. tail logical; if TRUE, probabilities are P[X < or = x] otherwise, S(x) = P[X>x].
Details

If { hO } or { HO } are not specified, they assume the default values of hO(x) = 1 and HO(x) = x,
respectively.

The survival distribution function is given by,
S(x) = exp(-HO(x)),

where HO(x) is the cumulative hazard function. Only one of hO or HO can be specified, if hO is
given, then HO(x) = integrate(h0, 0, x, subdivisions = 500L)

To calculate the restricted mean survival time for Weibull distribution with

H = function(x) x*2 h = function(x) 2*x

use

rmst(tua, hO = h)

or

rmst(tua, HO = H)

when both hO and HO are provided, only hO will be used and HO will be ignored.
To generate Cox PH survival time, use

u = exp(-H(O*exp(Ip))

then, -log(u)*exp(-1p) = H(t). Find t such that H(t) = -log(u)exp(-Ip).

Value

{ dsurv } gives the density h(x)/S(x), { psurv } gives the distribution function, { qsurv } gives
the quantile function, { rsurv } generates random survival time, and { rcoxph } generates random
survival time with Cox proportional hazards model.

The length of the result is determined by n for rsurv and rcoxph.

22 survfit.Iple

Author(s)

Bingshu E. Chen

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, volume
1. Wiley, New York.

See Also

Distributions for other standard distributions, including dweibull for the Weibull distribution.

Examples

use gsurv to generate quantiles for weibull distribution

H1 = function(x) x*3

gsurv(seq(@.1, 0.9, 0.2), HO = H1) ### shall be the same as
gweibull(seq(@.1, 0.9, 0.2), 3)

to get random survival time from the cumulative hazard function H1(t)
rsurv(15, HO = H1)

survfit.lple Compute a Survival Curve from a Local Linear Partial Likelihood Es-
timate.

Description

Computes the predicted survival function for a model fitted by (Iple).

Usage

S3 method for class 'lple'
S3 method for class 'lple'

survfit(formula, se.fit=TRUE, conf.int=.95, ...)
Arguments
formula a fitted model from (Iple) fit
se.fit a logical value indicating whether standard errors shall be computed. Default is
TRUE
conf.int The level for a two-sided confidence interval on the survival curve. Default is
0.95

other arguments to the specific method

survfit.Iple 23

Details

survfit.Iple is called to compuate baseline survival function from the Iple model 1ple.

The default method, survfit has its own help page. Use methods("survfit") to get all the methods for
the survfit generic.

Value

survfit.Iple returns a list of predicted baseline survival function, cumulative hazard function and

residuals.

surv Predicted baseline survival function when beta(w) = 0.

cumhaz Baseline cumulative hazard function, -log(surv).

hazard Baseline hazard function.

varhaz Variance of the baseline hazard.

residuals Martingale residuals of the (Iple) model.

std.err Standard error for the cumulative hazard function, if se.fit = TRUE.

See survfit for more detail about other output values such as upper, lower, conf.type. Confidence
interval is based on log-transformation of survival function.

Author(s)
Bingshu E. Chen

See Also

The default method for survfit survfit, #survfit.lple

Examples

#
See example in lple
#

Index

+ Brier Score
ibs, 5
IPCW, 7

* Cox PH random variable
rsurv, 20

* JPCW
ibs, 5
IPCW, 7

* Restricted Mean Survival Time
rmst, 19

* Survival Analysis
rmst, 19

* Survival distribution
rsurv, 20

x biomarker interaction
1plb, 8
1ple, 10

« biomarker
1pl-package, 2

* bootstrap
1plb, 8

* control
control, 3

* local linear model
1pl-package, 2

* local partial likelihood
1plb, 8
lple, 10

+ Iple
plot.1lple, 15

+ Ipl
1pl-package, 2

+ plot
plot.1lple, 15

* predict
predict.lple, 16

* print
print.lplb, 17
print.lple, 18

24

* survfit
survfit.lple, 22

asymSCB (1ple), 10

brier, 6
brierScore, 8§
brierScore (ibs), 5
bstrp (1plb), 8

control, 3

coxph, 6,9, 11, 20

coxpl (coxScoreHess), 4
coxScoreHess, 4

Distributions, 22
dsurv (rsurv), 20
dweibull, 22

ibs, 5, 8
IPCW, 6,7
ipcw (IPCW), 7

K_func (1ple), 10

1pl-doc (1pl-package), 2
1pl-package, 2
1pl.control, 9,11, 15, 16
1pl.control (control), 3
1plb, 4,8, 16-18
1plDemoData (1ple), 10

lple, 3, 4,10, 15, 16, 18, 19, 23

lple_fit (1ple), 10
lple_se (1ple), 10

maxTest (1plb), 8
multiRoot, 5, 12, 15

nlm, /3
nlminb, /3
numHessian, 5, 13, 15

INDEX

numJacobian, 13
numJacobian (numScore), 14
numScore, 5, 13, 14, 14

optim, /13
optimize, 13

plot.1lple, 9,11, 15
predict, 17
predict.coxph, 17
predict.1lple, 16
print.default, 18, 19
print.lplb, 17
print.lple, 9,11, 16,18
psurv (rsurv), 20

gsurv (rsurv), 20

rcoxph (rsurv), 20

residuals.lple (predict.1lple), 16
rmst, 19

rmstFit (rmst), 19

rsurv (rsurv), 20

rsurv, 20

Surv, 20
survfit, 7, 23
survfit.lple, 17,22, 23

uniroot, 13

25

	lpl-package
	control
	coxScoreHess
	ibs
	IPCW
	lplb
	lple
	multiRoot
	numHessian
	numScore
	plot.lple
	predict.lple
	print.lplb
	print.lple
	rmst
	rsurv
	survfit.lple
	Index

